AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery

Anni Liu1,2Feng Wu1,2,3Yixin Zhang1,2Ying Jiang1,2Chen Xie1,2Keqing Yang1,2Jiahui Zhou1,2( )Man Xie1,2( )
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
Show Author Information

Graphical Abstract

A simple one-step hydrothermal method was used to prepare polyaniline-in situ-intercalated and MXene-composited V2O5 (PVM), which increased the lattice plane spacing of V2O5, and formed the heterogeneous structure in PVM to promote charge transfer and inhibit the dissolution of V2O5. Thus, high-capacity, long-cycling and superior-rate-performance aqueous zinc-ion batteries were achieved.

Abstract

Aqueous zinc (Zn)-ion batteries (AZIBs) present safe and environmentally friendly features thereby emerging as an attractive energy storage device. The V2O5-based cathodes are promising because of their high theoretical capacity and energy density. However, insufficient interlayer distance, easy dissolution and structural collapse due to irreversible crystalline phase transition limit the development of V2O5 cathodes in AZIBs. Herein, doubly modified V2O5-based cathode which was in-situ intercalated by polyaniline (PANI) and composited with MXene (Ti3C2Tx) (denoted PVM) were synthesized by one-step method for the first time. The in situ intercalation of PANI provides a channel for the rapid diffusion of Zn2+ and the heterogeneous structures effectively promote charge transfer and enable structural integrity of cathode during cycling. Meanwhile, the conductivity of PVM electrode is greatly improved. Specifically, the PVM electrode shows a superior rate performance of 82 mAh·g−1 after 2000 cycles at 10 A·g−1. And it shows high pseudocapacitance behavior (80.23% capacitor contribution ratio at 0.1 mV·s−1). A novel method of intercalation composite modification for the cathode is proposed, which provides fundamental guidance for the development of high-performance cathodes for AZIBs.

Electronic Supplementary Material

Download File(s)
12274_2023_5676_MOESM1_ESM.pdf (3.2 MB)

References

[1]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[2]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[3]

Yong, B.; Ma, D. T.; Wang, Y. Y.; Mi, H. W.; He, C. X.; Zhang, P. X. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 2020, 10, 2002354.

[4]

Xu, W. W.; Wang, Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 2019, 11, 90.

[5]

Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.

[6]

Liang, Y. L.; Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 2023, 8, 109–122.

[7]

Zhou, J. H.; Wu, F.; Mei, Y.; Hao, Y. T.; Li, L.; Xie, M.; Chen, R. J. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2200782.

[8]

Wang, X.; Zhang, Z.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

[9]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[10]

Liu, A. N.; Wu, F.; Zhang, Y. X.; Zhou, J. H.; Zhou, Y. Z.; Xie, M. Insight on cathodes chemistry for aqueous zinc-ion batteries: From reaction mechanisms, structural engineering, and modification strategies. Small 2022, 18, 2201011.

[11]

Li, A.; Wei, Z. C.; Wang, Y. X.; Zhang, Y. H.; Wang, M. J.; Zhang, H. Y.; Ma, Y. N.; Liu, C. X.; Zou, J. J.; Ge, B. H. et al. Flexible quasi-3D zinc ion microcapacitor based on V2O5-PANI cathode and MXene anode. Chem. Eng. J. 2023, 457, 141339.

[12]

Liu, S. C.; Zhu, H.; Zhang, B. H.; Li, G.; Zhu, H. K.; Ren, Y.; Geng, H. B.; Yang, Y.; Liu, Q.; Li, C. C. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 2020, 32, 2001113.

[13]

Liu, H.; Jiang, L.; Cao, B.; Du, H. L.; Lu, H.; Ma, Y.; Wang, H.; Guo, H. Y.; Huang, Q. Z.; Xu, B. et al. Van der waals interaction-driven self-assembly of V2O5 nanoplates and mxene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano 2022, 16, 14539–14548.

[14]

Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K. J.; Choi, J. W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371.

[15]

Wan, F.; Zhou, X. Z.; Lu, Y.; Niu, Z. Q.; Chen, J. Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 2020, 5, 3569–3590.

[16]

Zhao, X. Y.; Liang, X. Q.; Li, Y.; Chen, Q. G.; Chen, M. H. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021, 42, 533–569.

[17]

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.

[18]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[19]

Tang, M. Y.; Zhu, Q. N.; Hu, P. F.; Jiang, L.; Liu, R. Y.; Wang, J. W.; Cheng, L. W.; Zhang, X. H.; Chen, W. X.; Wang, H. Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 2021, 31, 2102011.

[20]

Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

[21]

Liu, W. B.; Hao, J. W.; Xu, C. J.; Mou, J.; Dong, L. B.; Jiang, F. Y.; Kang, Z.; Wu, J. L.; Jiang, B. Z.; Kang, F. Y. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 2017, 53, 6872–6874.

[22]

Li, C. X.; Yuan, W. T.; Li, C.; Wang, H.; Wang, L. B.; Liu, Y. C.; Zhang, N. Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries. Chem. Commun. 2021, 57, 4319–4322.

[23]

Xu, X. M.; Xiong, F. Y.; Meng, J. S.; Wang, X. P.; Niu, C. J.; An, Q. Y.; Mai, L. Q. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398.

[24]

Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157–3162.

[25]

Zhao, L. Z.; Wei, Q. L.; Huang, Y. X.; Luo, R.; Xie, M.; Li, L.; Mai, L. Q.; Wu, F.; Chen, R. J. Pseudocapacitive graphene-wrapped porous VO2 microspheres for ultrastable and ultrahigh-rate sodium-ion storage. ChemElectroChem 2019, 6, 1400–1406.

[26]

Qi, Y.; Huang, J. H.; Yan, L.; Cao, Y. J.; Xu, J.; Bin, D.; Liao, M. C.; Xia, Y. Y. Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods. Chem. Eng. J. 2022, 442, 136349.

[27]

Bi, S. H.; Wang, S.; Yue, F.; Tie, Z. W.; Niu, Z. Q. A rechargeable aqueous manganese-ion battery based on intercalation chemistry. Nat. Commun. 2021, 12, 6991.

[28]

Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.

[29]

Kundu, S.; Satpati, B.; Kar, T.; Pradhan, S. K. Microstructure characterization of hydrothermally synthesized PANI/V2O5. nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard. Mater. 2017, 339, 161–173.

[30]

Huang, P. F.; Ying, H. J.; Zhang, S. L.; Zhang, Z.; Han, W. Q. Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 2022, 12, 2202052.

[31]

Jiang, Y.; Xie, M.; Wu, F.; Ye, Z. Q.; Zhou, Y. Z.; Li, L.; Chen, R. J. Metal-organic framework derived cobalt phosphide nanoparticles encapsulated within hierarchical hollow carbon superstructure for stable sodium storage. Chem. Eng. J. 2022, 438, 134279.

[32]

Wan, F.; Zhang, L. L.; Wang, X. Y.; Bi, S. S.; Niu, Z. Q.; Chen, J. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 2018, 28, 1804975.

[33]

Chen, S.; Li, K.; Hui, K. S.; Zhang, J. T. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Adv. Funct. Mater. 2020, 30, 2003890.

[34]

Zhu, X. D.; Cao, Z. Y.; Li, X. L.; Pei, L. Y.; Jones, J.; Zhou, Y. N.; Dong, P.; Wang, L. P.; Ye, M. X.; Shen, J. F. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Storage Mater. 2022, 45, 568–577.

[35]

Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Li, L.; Chen, R. J. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 2022, 34, 2106897.

[36]

Li, X. L.; Li, M.; Yang, Q.; Li, H. F.; Xu, H. L.; Chai, Z. F.; Chen, K.; Liu, Z. X.; Tang, Z. J.; Ma, L. T. et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano 2020, 14, 541–551.

[37]

Liu, Y.; Dai, Z. W.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D. L.; Chen, B.; Wei, W.; Chen, X.; Liu, Z. J. et al. Sulfonic-group-grafted Ti3C2Tx MXene: A silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 2021, 15, 9065–9075.

[38]

Cao, B.; Liu, H.; Zhang, X.; Zhang, P.; Zhu, Q. Z.; Du, H. L.; Wang, L. L.; Zhang, R. P.; Xu, B. MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 2021, 13, 202.

[39]

Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H. L.; Xu, B. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 2021, 31, 2102126.

[40]

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148.

[41]

Zhang, P.; Zhu, Q. Z.; Soomro, R. A.; He, S. Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.

[42]

Zhang, P.; Li, J. P.; Yang, D. Y.; Soomro, R. A.; Xu, B. Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 2023, 33, 2209918.

[43]

Wang, M. J.; Cheng, Y. F.; Zhang, H. Y.; Cheng, F.; Wang, Y. X.; Huang, T.; Wei, Z. C.; Zhang, Y. H.; Ge, B. H.; Ma, Y. N. et al. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 2023, 33, 2211199.

[44]

Zhang, H. Y.; Wei, Z. C.; Wu, J. H.; Cheng, F.; Ma, Y. N.; Liu, W. J.; Cheng, Y. F.; Lin, Y. J.; Liu, N. S.; Gao, Y. H. et al. Interlayer-spacing-regulated MXene/rGO foam for multi-functional zinc-ion microcapacitors. Energy Storage Mater. 2022, 50, 444–453.

[45]

Shi, M. J.; Wang, R. Y.; Li, L. Y.; Chen, N. T.; Xiao, P.; Yan, C.; Yan, X. B. Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 2023, 33, 2209777.

[46]

Cai, M.; Yan, H.; Li, Y. T.; Li, W.; Li, H.; Fan, X. Q.; Zhu, M. H. Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application. Chem. Eng. J. 2021, 410, 128310.

[47]

Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 1907684.

[48]

Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z. Q.; Chen, J. A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 2020, 11, 2199.

[49]

Yang, J. L.; Li, J.; Zhao, J. W.; Liu, K.; Yang, P. H.; Fan, H. J. Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 2022, 34, 2202382.

[50]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[51]

Xu, Y. J.; Wang, S.; Yang, J.; Han, B.; Nie, R.; Wang, J. X.; Wang, J. G.; Jing, H. W. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy 2018, 51, 442–450.

[52]

Khot, A. C.; Dongale, T. D.; Park, J. H.; Kesavan, A. V.; Kim, T. G. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS Appl. Mater. Interfaces 2021, 13, 5216–5227.

[53]

Zhang, K.; Li, N.; Ma, X. X.; Wang, Y.; Zhao, J. P.; Qiang, L. S.; Li, X. G.; Li, Y. Building ultrathin polyaniline encapsulated V2O5 heterogeneous nanowires and its electrochromic performance. J. Electroanal. Chem. 2018, 825, 16–21.

[54]

Wei, Z. C.; Zhang, H. Y.; Li, A.; Cheng, F.; Wang, Y. X.; Zhang, Y. H.; Wang, M. J.; Gao, B. W.; Cheng, Y. F.; Liu, C. X. et al. Construction of in-plane 3D network electrode strategy for promoting zinc ion storage capacity. Energy Storage Mater. 2023, 55, 754–762.

[55]
Yue, Y.; Liu, N. S.; Su, T. Y.; Cheng, Y. F.; Liu, W. J.; Lei, D. D.; Cheng, F.; Ge, B. H.; Gao, Y. H. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202211613.
[56]

Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

[57]

Lee, K.; Wang, Y.; Cao, G. Z. Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. J. Phys. Chem. B 2005, 109, 16700–16704.

[58]

Deki, S.; Aoi, Y.; Kajinami, A. A novel wet process for the preparation of vanadium dioxide thin film. J. Mater. Sci. 1997, 32, 4269–4273.

[59]

Zheng, J.; Zhan, C. Y.; Zhang, K.; Fu, W. W.; Nie, Q. J.; Zhang, M.; Shen, Z. R. Rapid electrochemical activation of V2O3@C cathode for high-performance zinc-ion batteries in water-in-salt electrolyte. ChemSusChem 2022, 15, e202200075.

[60]

Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W.; Sun, X. Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries. Adv. Mater. 2022, 34, e2204320.

[61]

Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.

[62]

Han, C. P.; Li, H. F.; Li, Y.; Zhu, J. X.; Zhi, C. Y. Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat. Commun. 2021, 12, 2400.

[63]

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

[64]

Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G.; Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144.

[65]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[66]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[67]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[68]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[69]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

Nano Research
Pages 9461-9470
Cite this article:
Liu A, Wu F, Zhang Y, et al. Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery. Nano Research, 2023, 16(7): 9461-9470. https://doi.org/10.1007/s12274-023-5676-0
Topics:

1129

Views

9

Crossref

7

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 19 January 2023
Revised: 06 March 2023
Accepted: 19 March 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return