Journal Home > Volume 16 , Issue 7

Elasticity, as an emerging phenomenon of crystals, endows the newfangled properties on crystals owing to the altered local crystallinity in the deformed state, and hence attracts increasing research endeavors. However, only a few molecular crystals and a limited number of one-dimensional coordination polymer crystals have exhibited such fantastic elastic response under mechanical stress. Herein, we report the first example of elastic hydrogen-bonded ionic framework (HIF) of {(CN3H6)2[Ti(μ2-O)(SO4)2]}n, assembled from one-dimensional negatively charged inorganic [Ti(μ2-O)(SO4)2]n2n chains and positively charged organic guanidinium cations via hydrogen bonds and electrostatic interactions. The slender prismatic single crystal exhibits remarkable elasticity with an optimal elastic bending strain (ε) of 2.5%. Impressively, the crystals give rise to two-dimensional elasticity owing to the equivalent crystallographic planes of the exposed faces and an unusual elastic response at liquid nitrogen temperature. The in-depth crystallographic analyses reveal hydrogen bonds and electrostatic interactions between anion chains and cations function like adhesive glue and account for such specific elastic properties, owing to the flexible and dynamic attributes of hydrogen bonds as they can work in a range of distance and orientation. And the channel in HIF provides space for bending with reduced strain. Incorporating these factors into low-dimensional crystals could be a general guidance for designing elastic crystals. Elasticity ganged with other intrinsic properties of HIF materials could inspire their newfangled applications in the near future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Elastic hydrogen-bonded ionic framework

Show Author's information Congyan Liu,§Fei Ye,§Zhiling XiangYan WangTian ZhangBo Liu( )
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

§ Congyan Liu and Fei Ye contributed equally to this work.

Abstract

Elasticity, as an emerging phenomenon of crystals, endows the newfangled properties on crystals owing to the altered local crystallinity in the deformed state, and hence attracts increasing research endeavors. However, only a few molecular crystals and a limited number of one-dimensional coordination polymer crystals have exhibited such fantastic elastic response under mechanical stress. Herein, we report the first example of elastic hydrogen-bonded ionic framework (HIF) of {(CN3H6)2[Ti(μ2-O)(SO4)2]}n, assembled from one-dimensional negatively charged inorganic [Ti(μ2-O)(SO4)2]n2n chains and positively charged organic guanidinium cations via hydrogen bonds and electrostatic interactions. The slender prismatic single crystal exhibits remarkable elasticity with an optimal elastic bending strain (ε) of 2.5%. Impressively, the crystals give rise to two-dimensional elasticity owing to the equivalent crystallographic planes of the exposed faces and an unusual elastic response at liquid nitrogen temperature. The in-depth crystallographic analyses reveal hydrogen bonds and electrostatic interactions between anion chains and cations function like adhesive glue and account for such specific elastic properties, owing to the flexible and dynamic attributes of hydrogen bonds as they can work in a range of distance and orientation. And the channel in HIF provides space for bending with reduced strain. Incorporating these factors into low-dimensional crystals could be a general guidance for designing elastic crystals. Elasticity ganged with other intrinsic properties of HIF materials could inspire their newfangled applications in the near future.

Keywords: single crystal, elasticity, hydrogen-bond interaction, hydrogen-bonded ionic framework (HIF), guanidinium

References(45)

[1]

Reddy, C. M.; Basavoju, S.; Desiraju, G. R. Sorting of polymorphs based on mechanical properties. Trimorphs of 6-chloro-2,4-dinitroaniline. Chem. Commun. 2005, 19, 2439–2441.

[2]

Takamizawa, S.; Takasaki, Y.; Sasaki, T.; Ozaki, N. Superplasticity in an organic crystal. Nat. Commun. 2018, 9, 3984.

[3]

Das, S.; Mondal, A.; Reddy, C. M. Harnessing molecular rotations in plastic crystals: A holistic view for crystal engineering of adaptive soft materials. Chem. Soc. Rev. 2020, 49, 8878–8896.

[4]

Thompson, A. J.; Orué, A. I. C.; Nair, A. J.; Price, J. R.; McMurtrie, J.; Clegg, J. K. Elastically flexible molecular crystals. Chem. Soc. Rev. 2021, 50, 11725–11740.

[5]

Wang, K. L.; Mishra, M. K.; Sun, C. C. Exceptionally elastic single-component pharmaceutical crystals. Chem. Mater. 2019, 31, 1794–1799.

[6]

Ghosh, S.; Reddy, C. M. Elastic and bendable caffeine cocrystals: Implications for the design of flexible organic materials. Angew. Chem., Int. Ed. 2012, 51, 10319–10323.

[7]

Annadhasan, M.; Agrawal, A. R.; Bhunia, S.; Pradeep, V. V.; Zade, S. S.; Reddy, C. M.; Chandrasekar, R. Mechanophotonics: Flexible single-crystal organic waveguides and circuits. Angew. Chem., Int. Ed. 2020, 59, 13852–13858.

[8]

Liu, B.; Di, Q.; Liu, W. T.; Wang, C. G.; Wang, Y.; Zhang, H. Y. Red-emissive organic crystals of a single-benzene molecule: Elastically bendable and flexible optical waveguide. J. Phys. Chem. Lett. 2019, 10, 1437–1442.

[9]

Kenny, E. P.; Jacko, A. C.; Powell, B. J. Mechanomagnetics in elastic crystals: Insights from [Cu(acac)2]. Angew. Chem., Int. Ed. 2019, 58, 15082–15088.

[10]

Kwon, T.; Koo, J. Y.; Choi, H. C. Highly conducting and flexible radical crystals. Angew. Chem., Int. Ed. 2020, 59, 16436–16439.

[11]

Owczarek, M.; Hujsak, K. A.; Ferris, D. P.; Prokofjevs, A.; Majerz, I.; Szklarz, P.; Zhang, H. C.; Sarjeant, A. A.; Stern, C. L.; Jakubas, R. et al. Flexible ferroelectric organic crystals. Nat. Commun. 2016, 7, 13108.

[12]

Liu, H. P.; Lu, Z. Q.; Tang, B. L.; Qu, C.; Zhang, Z. L.; Zhang, H. Y. A flexible organic single crystal with plastic-twisting and elastic-bending capabilities and polarization-rotation function. Angew. Chem., Int. Ed. 2020, 59, 12944–12950.

[13]

Bhattacharya, B.; Roy, D.; Dey, S.; Puthuvakkal, A.; Bhunia, S.; Mondal, S.; Chowdhury, R.; Bhattacharya, M.; Mandal, M.; Manoj, K. et al. Mechanical-bending-induced fluorescence enhancement in plastically flexible crystals of a GFP chromophore analogue. Angew. Chem., Int. Ed. 2020, 59, 19878–19883.

[14]

Liu, G. F.; Liu, J.; Ye, X.; Nie, L. N.; Gu, P. Y.; Tao, X. T.; Zhang, Q. C. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem., Int. Ed. 2017, 56, 198–202.

[15]

Worthy, A.; Grosjean, A.; Pfrunder, M. C.; Xu, Y. N.; Yan, C.; Edwards, G.; Clegg, J. K.; McMurtrie, J. C. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 2018, 10, 65–69.

[16]

Đaković, M.; Borovina, M.; Pisačić, M.; Aakeröy, C. B.; Soldin, Ž.; Kukovec, B. M.; Kodrin, I. Mechanically responsive crystalline coordination polymers with controllable elasticity. Angew. Chem., Int. Ed. 2018, 57, 14801–14805.

[17]

Pisačić, M.; Kodrin, I.; Trninić, A.; Đaković, M. Two-dimensional anisotropic flexibility of mechanically responsive crystalline cadmium(II) coordination polymers. Chem. Mater. 2022, 34, 2439–2448.

[18]

Rath, B. B.; Vittal, J. J. Mechanical bending and modulation of photoactuation properties in a one-dimensional Pb(II) coordination polymer. Chem. Mater. 2021, 33, 4621–4627.

[19]

Mei, L.; An, S. W.; Hu, K. Q.; Wang, L.; Yu, J. P.; Huang, Z. W.; Kong, X. H.; Xia, C. Q.; Chai, Z. F.; Shi, W. Q. Molecular spring-like triple-helix coordination polymers as dual-stress and thermally responsive crystalline metal–organic materials. Angew. Chem., Int. Ed. 2020, 59, 16061–16068.

[20]

Bhattacharya, B.; Michalchuk, A. A. L.; Silbernagl, D.; Rautenberg, M.; Schmid, T.; Feiler, T.; Reimann, K.; Ghalgaoui, A.; Sturm, H.; Paulus, B. et al. A mechanistic perspective on plastically flexible coordination polymers. Angew. Chem., Int. Ed. 2020, 59, 5557–5561.

[21]

Barthelet, K.; Marrot, J.; Riou, D.; Férey, G. A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew. Chem., Int. Ed. 2002, 41, 281–284.

[22]

Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380–1399.

[23]

Li, S. L.; Zeng, S. L.; Tian, Y. Y.; Jing, X. F.; Sun, F. X.; Zhu, G. S. Two flexible cationic metal–organic frameworks with remarkable stability for CO2/CH4 separation. Nano Res. 2021, 14, 3288–3293.

[24]

Meng, W. J.; Kondo, S.; Ito, T.; Komatsu, K.; Pirillo, J.; Hijikata, Y.; Ikuhara, Y.; Aida, T.; Sato, H. An elastic metal–organic crystal with a densely catenated backbone. Nature 2021, 598, 298–303.

[25]

Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure–property relationships. Chem. Soc. Rev. 2011, 40, 1059–1080.

[26]

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

[27]

Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

[28]

Feng, H.; Xiong, X. H.; Gong, L. L.; Zhang, H. P.; Xu, Y.; Feng, X. F.; Luo, F. Rational tuning of thorium-organic frameworks by reticular chemistry for boosting radionuclide sequestration. Nano Res. 2022, 15, 1472–1478.

[29]

Moliner, M.; Martínez, C.; Corma, A. Multipore zeolites: Synthesis and catalytic applications. Angew. Chem., Int. Ed. 2015, 54, 3560–3579.

[30]

Shi, Y. S.; Song, J.; Cui, F. C.; Duli, X. S.; Tian, Y. Y.; Jin, S. H.; Shu, Q. H.; Zhu, G. S. Designing energetic covalent organic frameworks for stabilizing high-energy compounds. Nano Res. 2023, 16, 1507–1512.

[31]

Liu, Y.; Xu, Q. Q.; Chen, L. H.; Song, C. H.; Yang, Q. W.; Zhang, Z. G.; Lu, D.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Res. 2022, 15, 7695–7702.

[32]

Wang, Y.; Hou, X. D.; Liu, C. Y.; Albolkany, M. K.; Wang, Y.; Wu, N. N.; Chen, C. H.; Liu, B. Combustible ice mimicking behavior of hydrogen-bonded organic framework at ambient condition. Nat. Commun. 2020, 11, 3124.

[33]

Liu, B. T.; Pan, X. H.; Nie, D. Y.; Hu, X. J.; Liu, E. P.; Liu, T. F. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 2020, 32, 2005912.

[34]

Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lü, J.; Liu, T. F.; Cao, R. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 7691–7696.

[35]

Yin, Q.; Alexandrov, E. V.; Si, D. H.; Huang, Q. Q.; Fang, Z. B.; Zhang, Y.; Zhang, A. A.; Qin, W. K.; Li, Y. L.; Liu, T. F. et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115854.

[36]

Reddy, D. S.; Duncan, S.; Shimizu, G. K. H. A family of supramolecular inclusion solids based upon second-sphere interactions. Angew. Chem., Int. Ed. 2003, 42, 1360–1364.

[37]

Kubo, H.; Oketani, R.; Hisaki, I. Quasi single-crystalline transformation of porous frameworks accompanied by interlayer rearrangements of hydrogen bonds. Chem. Commun. 2021, 57, 8568–8571.

[38]

Zhang, X.; Li, L. B.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G. D. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633–640.

[39]

Xu, P. Z.; Cui, B. W.; Bu, Y. Q.; Wang, H. T.; Guo, X.; Wang, P.; Shen, Y. R.; Tong, L. M. Elastic ice microfibers. Science 2021, 373, 187–192.

[40]

Adachi, T.; Ward, M. D. Versatile and resilient hydrogen-bonded host frameworks. Acc. Chem. Res. 2016, 49, 2669–2679.

[41]

Brekalo, I.; Deliz, D. E.; Barbour, L. J.; Ward, M. D.; Friščić, T.; Holman, K. T. Microporosity of a guanidinium organodisulfonate hydrogen-bonded framework. Angew. Chem., Int. Ed. 2020, 59, 1997–2002.

[42]

Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Hydrogen-bonded organic frameworks (HOFs): A new class of porous crystalline proton-conducting materials. Angew. Chem., Int. Ed. 2016, 55, 10667–10671.

[43]

Pisačić, M.; Kodrin, I.; Biljan, I.; Đaković, M. Exploring the diversity of elastic responses of crystalline cadmium(II) coordination polymers: From elastic towards plastic and brittle responses. CrystEngComm 2021, 23, 7072–7080.

[44]

Zhao, K.; Zhang, T. F.; Chang, H. C.; Yang, Y.; Xiao, P. S.; Zhang, H. T.; Li, C. X.; Tiwary, C. S.; Ajayan, P. M.; Chen, Y. S. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv. 2019, 5, eaav2589.

[45]

Liu, H. P.; Ye, K. Q.; Zhang, Z. L.; Zhang, H. Y. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew. Chem., Int. Ed. 2019, 58, 19081–19086.

Video
12274_2023_5675_MOESM6_ESM.mp4
12274_2023_5675_MOESM11_ESM.mp4
12274_2023_5675_MOESM9_ESM.mp4
12274_2023_5675_MOESM7_ESM.mp4
12274_2023_5675_MOESM10_ESM.mp4
12274_2023_5675_MOESM8_ESM.mp4
File
12274_2023_5675_MOESM1_ESM.pdf (1.8 MB)
12274_2023_5675_MOESM2_ESM.pdf (98.3 KB)
12274_2023_5675_MOESM3_ESM.pdf (83.6 KB)
12274_2023_5675_MOESM4_ESM.cif (121.9 KB)
12274_2023_5675_MOESM5_ESM.cif (90.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2023
Revised: 16 March 2023
Accepted: 16 March 2023
Published: 20 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge support from the Chinese Academy of Sciences and University of Science and Technology of China, the National Key Research and Development Program of China (No. 2021YFA1500402), the National Natural Science Foundation of China (Nos. 21571167, 51502282, and 22075266), and the Fundamental Research Funds for the Central Universities (Nos. WK2060190053 and WK2060190100).

Return