Journal Home > Volume 16 , Issue 9

Photon emission during contact electrification (CE) has recently been observed, which is called as CE-induced interface photon emission spectroscopy (CEIIPES). Physical mechanisms of CEIIPES are essential for interpreting the structure and electronic interactions of a contacted interface. Using the methods of density functional theory (DFT) and time-dependent DFT (TDDFT), it is confirmed theoretically that the spectrum of emitted photons is contributed from electron transfer and transition during CE. Specifically, the excited electrons from higher energy state in one material may transfer to a lower energy state of another material followed by a transition; and/or some unstable excited electrons at a higher energy level of one material may transit to a lower energy state of itself, both of which result in CEIIPES. Furthermore, the CE-induced interface absorption spectrum (CEIIAS) has been demonstrated, due to the intermolecular electron transfer excitation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces

Show Author's information Yang Nan1,2,§Jiajia Shao1,2,§Ding Li1,2Xin Guo1,2Morten Willatzen1,2( )Zhong Lin Wang1,2,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Georgia Institute of Technology, Atlanta, GA 30332, USA

§ Yang Nan and Jiajia Shao contributed equally to this work.

Abstract

Photon emission during contact electrification (CE) has recently been observed, which is called as CE-induced interface photon emission spectroscopy (CEIIPES). Physical mechanisms of CEIIPES are essential for interpreting the structure and electronic interactions of a contacted interface. Using the methods of density functional theory (DFT) and time-dependent DFT (TDDFT), it is confirmed theoretically that the spectrum of emitted photons is contributed from electron transfer and transition during CE. Specifically, the excited electrons from higher energy state in one material may transfer to a lower energy state of another material followed by a transition; and/or some unstable excited electrons at a higher energy level of one material may transit to a lower energy state of itself, both of which result in CEIIPES. Furthermore, the CE-induced interface absorption spectrum (CEIIAS) has been demonstrated, due to the intermolecular electron transfer excitation.

Keywords: spectroscopy, polymers, contact electrification (CE), time-dependent density functional theory (TDDFT), CE-induced interface photon emission spectroscopy (CEIIPES), CE-induced interface absorption spectrum (CEIIAS)

References(48)

[1]
Herzberg, G. Molecular Spectra and Molecular Structure; D. van Nostrand: Princeton, 1945.
[2]

Morton, R. A. Spectroscopy as a biochemical tool. Nature 1962, 193, 314–318.

[3]

Day, D. E. Determining the Co-ordination number of aluminium ions by X-ray emission spectroscopy. Nature 1963, 200, 649–651.

[4]

Hachtel, J. A.; Huang, J. S.; Popovs, I.; Jansone-Popova, S.; Keum, J. K.; Jakowski, J.; Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Idrobo, J. C. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 2019, 363, 525–528.

[5]

Barone, V.; Alessandrini, S.; Biczysko, M.; Cheeseman, J. R.; Clary, D. C.; McCoy, A. B.; DiRisio, R. J.; Neese, F.; Melosso, M.; Puzzarini, C. Computational molecular spectroscopy. Nat. Rev. Methods Primers 2021, 1, 38.

[6]

Bohr, N. XXXVII. On the constitution of atoms and molecules. London Edinburgh Dublin Philos. Mag. J. Sci. 1913, 26, 476–502.

[7]

Stefánsson, A.; Gunnarsson, I.; Giroud, N. New methods for the direct determination of dissolved inorganic, organic, and total carbon in natural waters by reagent-freeTM ion chromatography and inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta 2007, 582, 69–74.

[8]

Mermet, J. M. Is it still possible, necessary, and beneficial to perform research in ICP-atomic emission spectrometry. J. Anal. At. Spectrom. 2005, 20, 11–16.

[9]

Li, D.; Xu, C.; Liao, Y. J.; Cai, W. Z.; Zhu, Y. Q.; Wang, Z. L. Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci. Adv. 2021, 7, eabj0349.

[10]

Wang, W. X.; Wang, Z. B.; Zhang, J. C.; Zhou, J. Y.; Dong, W. B.; Wang, Y. H. Contact electrification induced mechanoluminescence. Nano Energy 2022, 94, 106920.

[11]

Xie, Y. J.; Li, Z. Triboluminescence: Recalling interest and new aspects. Chem 2018, 4, 943–971.

[12]

Potashnik, R.; Goldschmidt, C. R.; Ottolenghi, M.; Weller, A. Absorption spectra of exciplexes. J. Chem. Phys. 1971, 55, 5344–5348.

[13]

Nam, K. H. Molecular dynamics-from small molecules to macromolecules. Int. J. Mol. Sci. 2021, 22, 3761.

[14]

Farr, E. P.; Quintana, J. C.; Reynoso, V.; Ruberry, J. D.; Shin, W. R.; Swartz, K. R. Introduction to time-resolved spectroscopy: Nanosecond transient absorption and time-resolved fluorescence of eosin B. J. Chem. Educ. 2018, 95, 864–871.

[15]

Louie, S. G.; Chan, Y. H.; da Jornada, F. H.; Li, Z. L.; Qiu, D. Y. Discovering and understanding materials through computation. Nat. Mater. 2021, 20, 728–735.

[16]

Fish, J.; Wagner, G. J.; Keten, S. Mesoscopic and multiscale modelling in materials. Nat. Mater. 2021, 20, 774–786.

[17]

Marzari, N.; Ferretti, A.; Wolverton, C. Electronic-structure methods for materials design. Nat. Mater. 2021, 20, 736–749.

[18]

Adamo, C.; Jacquemin, D. The calculations of excited-state properties with time-dependent density functional theory. Chem. Soc. Rev. 2013, 42, 845–856.

[19]

Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 1996, 76, 1212–1215.

[20]

Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.

[21]

Sun, M. Z.; Lu, Q. Y.; Wang, Z. L.; Huang, B. L. Understanding contact electrification at liquid–solid interfaces from surface electronic structure. Nat. Commun. 2021, 12, 1752.

[22]

Nan, Y.; Shao, J. J.; Willatzen, M.; Wang, Z. L. Understanding contact electrification at water/polymer interface. Research 2022, 2022, 9861463.

[23]

Xiang, Y. P.; Li, P.; Gong, S. L.; Huang, Y. H.; Wang, C. Y.; Zhong, C.; Zeng, W. X.; Chen, Z. X.; Lee, W. K.; Yin, X. J. et al. Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Sci. Adv. 2020, 6, eaba7855.

[24]

Tang, X.; Cui, L. S.; Li, H. C.; Gillett, A. J.; Auras, F.; Qu, Y. K.; Zhong, C.; Jones, S. T. E.; Jiang, Z. Q.; Friend, R. H. et al. Highly efficient luminescence from space-confined charge-transfer emitters. Nat. Mater. 2020, 19, 1332–1338.

[25]

Sun, L. L.; Lin, S. Q.; Tang, W.; Chen, X.; Wang, Z. L. Effect of redox atmosphere on contact electrification of polymers. ACS Nano 2020, 14, 17354–17364.

[26]

Wu, J.; Wang, X. L.; Li, H. Q.; Wang, F.; Yang, W. X.; Hu, Y. Q. Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 2018, 48, 607–616.

[27]

Pan, Q. Y.; Abdellah, M.; Cao, Y. H.; Lin, W. H.; Liu, Y.; Meng, J.; Zhou, Q.; Zhao, Q.; Yan, X. M.; Li, Z. L. et al. Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. Nat. Commun. 2022, 13, 845.

[28]

Cui, L. S.; Gillett, A. J.; Zhang, S. F.; Ye, H.; Liu, Y.; Chen, X. K.; Lin, Z. S.; Evans, E. W.; Myers, W. K.; Ronson, T. K. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 2020, 14, 636–642.

[29]

Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312.

[30]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[31]

Lin, S. Q.; Xu, C.; Xu, L.; Wang, Z. L. The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 2020, 30, 1909724.

[32]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[33]

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[34]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[35]

Yoshida, M.; Ii, N.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Experimental and theoretical approaches to charging behavior of polymer particles. Chem. Eng. Sci. 2006, 61, 2239–2248.

[36]

Shirakawa, Y.; Ii, N.; Yoshida, M.; Takashima, R.; Shimosaka, A.; Hidaka, J. Quantum chemical calculation of electron transfer at metal/polymer interfaces. Adv. Powder Technol. 2010, 21, 500–505.

[37]

Liu, C. Y.; Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 2009, 480, 145–156.

[38]

Pan, S. H.; Zhang, Z. N. Triboelectric effect: A new perspective on electron transfer process. J. Appl. Phys. 2017, 122, 144302.

[39]

McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem., Int. Ed. 2008, 47, 2188–2207.

[40]

McCarty, L. S.; Winkleman, A.; Whitesides, G. M. Ionic electrets: Electrostatic charging of surfaces by transferring mobile ions upon contact. J. Am. Chem. Soc. 2007, 129, 4075–4088.

[41]

Lowell, J. The role of material transfer in contact electrification. J. Phys. D Appl. Phys. 1977, 10, L233–L235.

[42]

Baytekin, H. T.; Baytekin, B.; Incorvati, J. T.; Grzybowski, B. A. Material transfer and polarity reversal in contact charging. Angew. Chem., Int. Ed. 2012, 51, 4843–4847.

[43]

Liu, Z. Y.; Wang, X.; Lu, T.; Yuan, A. H.; Yan, X. F. Potential optical molecular switch: Lithium@cyclo[18]carbon complex transforming between two stable configurations. Carbon 2022, 187, 78–85.

[44]

Jacquemin, D.; Planchat, A.; Adamo, C.; Mennucci, B. TD-DFT assessment of functionals for optical 0–0 transitions in solvated dyes. J. Chem. Theory Comput. 2012, 8, 2359–2372.

[45]

Liu, Z. Y.; Lu, T.; Chen, Q. X. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467.

[46]

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence, and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[47]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[48]

Lu, T.; Chen, F. W. Atomic dipole moment corrected Hirshfeld population method. J. Theor. Comput. Chem. 2012, 11, 163–183.

File
12274_2023_5674_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 February 2023
Revised: 09 March 2023
Accepted: 16 March 2023
Published: 20 April 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 62001031, 52192610, 51702018, and 51432005), the Youth Innovation Promotion Association, CAS, the Fundamental Research Funds for the Central Universities (No. E0E48957), and the National Key R&D Program from Minister of Science and Technology (No. 2016YFA0202704). The authors are grateful to Xin-Zheng Li from Peking University of China for helpful discussions.

Return