Journal Home > Volume 16 , Issue 7

Gold-based catalysts are promising in CO preferential oxidation (CO-PROX) reaction in H2-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature. However, the decrease of CO conversion at elevated temperature due to the competition of H2 oxidation, together with the low stability of gold nanoparticles, has posed a dear challenge. Herein, we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion (30–100 °C) and very good catalyst stability without deactivation in a 200-h test. Detailed characterizations combined with density functional theory (DFT) calculation reveal that the synergistic effect of Au-Cu, the electron transfer from Au to Cu, leads to not only strengthened chemisorption of CO but also weakened dissociation of H2, both of which are helpful in inhibiting the competition of H2 oxidation thus widening the temperature window for CO total conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective and stable Au-Cu bimetallic catalyst for CO-PROX

Show Author's information Feng Hong1,6,§Guanjian Cheng2,§Weihao Hu1,5Shengyang Wang1,4Qike Jiang1Junhong Fu1Botao Qiao3( )Jiahui Huang1( )
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Feng Hong and Guanjian Cheng contributed equally to this work.

Abstract

Gold-based catalysts are promising in CO preferential oxidation (CO-PROX) reaction in H2-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature. However, the decrease of CO conversion at elevated temperature due to the competition of H2 oxidation, together with the low stability of gold nanoparticles, has posed a dear challenge. Herein, we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion (30–100 °C) and very good catalyst stability without deactivation in a 200-h test. Detailed characterizations combined with density functional theory (DFT) calculation reveal that the synergistic effect of Au-Cu, the electron transfer from Au to Cu, leads to not only strengthened chemisorption of CO but also weakened dissociation of H2, both of which are helpful in inhibiting the competition of H2 oxidation thus widening the temperature window for CO total conversion.

Keywords: galvanic replacement, gold catalysis, electronic interaction, CO preferential oxidation (CO-PROX)

References(63)

[1]

Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029.

[2]

Peschel, A. Industrial perspective on hydrogen purification, compression, storage, and distribution. Fuel Cells 2020, 20, 385–393.

[3]

Davó-Quiñonero, A.; Navlani-García, M.; Lozano-Castelló, D.; Bueno-López, A.; Anderson, J. A. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catal. 2016, 6, 1723–1731.

[4]

Qiao, B. T.; Liu, J. X.; Wang, Y. G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

[5]

Hong, F.; Wang, S. Y.; Zhang, J. Y.; Zhang, B. S.; Sun, K. J.; Huang, J. H.; Qiao, B. T.; Ta, N.; Li, M. R.; Li, D. et al. Blocking the non-selective sites through surface plasmon-induced deposition of metal oxide on Au/TiO2 for CO-PROX reaction. Chem Catal. 2021, 1, 456–466.

[6]

Miao, Y. X.; Wang, J.; Li, W. C. Enhanced catalytic activities and selectivities in preferential oxidation of CO over ceria-promoted Au/Al2O3 catalysts. Chin. J. Catal. 2016, 37, 1721–1728.

[7]

Lin, Q. Q.; Qiao, B. T.; Huang, Y. Q.; Li, L.; Lin, J.; Liu, X. Y.; Wang, A. Q.; Li, W. C.; Zhang, T. La-doped Al2O3 supported Au nanoparticles: Highly active and selective catalysts for PROX under PEMFC operation conditions. Chem. Commun. 2014, 50, 2721–2724.

[8]

Ni, J.; Wang, R.; Lin, J. X.; Wei, K. M. Ruthenium ammonium chloride as a precursor for the preparation of high activity catalysts for ammonia synthesis. Chin. J. Catal. 2009, 30, 185–190.

[9]

Hong, F.; Wang, S. Y.; Zhang, J. Y.; Fu, J. H.; Jiang, Q. K.; Sun, K. J.; Huang, J. H. Strong metal–support interaction boosting the catalytic activity of Au/TiO2 in chemoselective hydrogenation. Chin. J. Catal. 2021, 42, 1530–1537.

[10]

Hu, Z. W.; Zhang, L. J. Catalytic activity of bimetallic Rh/Rh-M nanosheets governed by CO spillover. Chem Catal. 2022, 2, 1512–1514.

[11]

Liu, K. L.; Qin, R. X.; Li, K. J.; Zhang, W. J.; Ruan, P. P.; Fu, G.; Zheng, N. F. Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimination. Chem Catal. 2021, 1, 1480–1492.

[12]

Hornés, A.; Hungría, A. B.; Bera, P.; Cámara, A. L.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J. et al. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 2010, 132, 34–35.

[13]

Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920–2924.

[14]

Alencar, C. S. L.; Paiva, A. R. N.; Da Silva, J. C. M.; Vaz, J. M.; Spinacé, E. V. One-step synthesis of AuCu/TiO2 catalysts for CO preferential oxidation. Mater. Res. 2020, 23, e20200181.

[15]

Eckert, R.; Felderhoff, M.; Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts under in situ ball milling. Angew. Chem., Int. Ed. 2017, 56, 2445–2448.

[16]

Zhang, R.; Miller, J. T.; Baertsch, C. D. Identifying the active redox oxygen sites in a mixed Cu and Ce oxide catalyst by in situ X-ray absorption spectroscopy and anaerobic reactions with CO in concentrated H2. J. Catal. 2012, 294, 69–78.

[17]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[18]

Lin, J.; Huang, Y. Q.; Li, L.; Qiao, B. T.; Wang, X. D.; Wang, A. Q.; Zhang, T. Exerting the structural advantages of Ir-in-CeO2 and Ir-on-CeO2 to widen the operating temperature window for preferential CO oxidation. Chem. Eng. J. 2011, 168, 822–826.

[19]

Hernández, J. A.; Gómez, S. A.; Zepeda, T. A.; Fierro-González, J. C.; Fuentes, G. A. Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction. ACS Catal. 2015, 5, 4003–4012.

[20]

Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. Preferential CO oxidation in hydrogen: Reactivity of core-shell nanoparticles. J. Am. Chem. Soc. 2010, 132, 7418–7428.

[21]

Liu, K.; Wang, A. Q.; Zhang, T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2012, 2, 1165–1178.

[22]

Jia, Z. M.; Qin, X. T.; Chen, Y. L.; Cai, X. B.; Gao, Z. R.; Peng, M.; Huang, F.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat. Commun. 2022, 13, 6798.

[23]

Jia, Z. M.; Peng, M.; Cai, X. B.; Chen, Y. L.; Chen, X. W.; Huang, F.; Zhao, L. M.; Diao, J. Y.; Wang, N.; Xiao, D. Q. et al. Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 2022, 12, 9602–9610.

[24]

Elmhamdi, A.; Pascual, L.; Nahdi, K.; Martinez-Arias, A. Structure/redox/activity relationships in CeO2/CuMn2O4 CO-PROX catalysts. Appl. Catal. B Environ. 2017, 217, 1–11.

[25]

Dreyer, J. A. H.; Grossmann, H. K.; Chen, J. F.; Grieb, T.; Gong, B. B.; Sit, P. H. L.; Mädler, L.; Teoh, W. Y. Preferential oxidation of carbon monoxide over Pt-FeOx/CeO2 synthesized by two-nozzle flame spray pyrolysis. J. Catal. 2015, 329, 248–261.

[26]

Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

[27]

Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602.

[28]

Quinet, E.; Piccolo, L.; Morfin, F.; Avenier, P.; Diehl, F.; Caps, V.; Rousset, J. L. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal. 2009, 268, 384–389.

[29]

Sangeetha, P.; Zhao, B.; Chen, Y. W. Au/CuOx-TiO2 catalysts for preferential oxidation of CO in hydrogen stream. Ind. Eng. Chem. Res. 2010, 49, 2096–2102.

[30]

Naknam, P.; Luengnaruemitchai, A.; Wongkasemjit, S. Au/ZnO and Au/ZnO-Fe2O3 prepared by deposition-precipitation and their activity in the preferential oxidation of CO. Energy Fuel 2009, 23, 5084–5091.

[31]

Divins, N. J.; López, E.; Angurell, I.; Neuberg, S.; Zapf, R.; Kolb, G.; Llorca, J. CO total and preferential oxidation over stable Au/TiO2 catalysts derived from preformed Au nanoparticles. Catalysts 2020, 10, 1028.

[32]

Konova, P.; Naydenov, A.; Tabakova, T.; Mehandjiev, D. Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal. Commun. 2004, 5, 537–542.

[33]

Hao, Y.; Mihaylov, M.; Ivanova, E.; Hadjiivanov, K.; Knözinger, H.; Gates, B. C. CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation. J. Catal. 2009, 261, 137–149.

[34]

Ntho, T. A.; Anderson, J. A.; Scurrell, M. S. CO oxidation over titanate nanotube supported Au: Deactivation due to bicarbonate. J. Catal. 2009, 261, 94–100.

[35]

Xu, H.; Ni, K.; Li, X. K.; Zhu, S.; Fan, G. H. Comparative studies of leached Pt-Fe and Pt-Co catalysts for CO oxidation reactions. Chin. J. Catal. 2017, 38, 1261–1269.

[36]

Wang, G.; Du, W.; Duan, X. Z.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Chen, W. Y.; Qian, G.; Yuan, W. K.; Zhou, X. G. et al. Mechanism-guided elaboration of ternary Au-Ti-Si sites to boost propylene oxide formation. Chem Catal. 2021, 1, 885–895.

[37]

Sun, Y. R.; Han, G. K.; Du, L.; Du, C. Y.; Zhou, X.; Sun, Q.; Gao, Y. Z.; Yin, G. P.; Li, Y.; Yang, T. Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. Chem Catal. 2021, 1, 1260–1272.

[38]

Aly, M.; Saeys, M. Selective silylation boosts propylene epoxidation with H2 and O2 over Au/TS-1. Chem Catal. 2021, 1, 761–762.

[39]

Suzuki, K.; Yamaguchi, T.; Matsushita, K.; Iitsuka, C.; Miura, J.; Akaogi, T.; Ishida, H. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core–shell structure. ACS Catal. 2013, 3, 1845–1849.

[40]

Zhu, B. E.; Thrimurthulu, G.; Delannoy, L.; Louis, C.; Mottet, C.; Creuze, J.; Legrand, B.; Guesmi, H. Evidence of Pd segregation and stabilization at edges of AuPd nano-clusters in the presence of CO: A combined DFT and DRIFTS study. J. Catal. 2013, 308, 272–281.

[41]

Liu, Y.; Jia, C. J.; Yamasaki, J.; Terasaki, O.; Schüth, F. Highly active iron oxide supported gold catalysts for CO oxidation: How small must the gold nanoparticles be. Angew. Chem., Int. Ed. 2010, 49, 5771–5775.

[42]

Au, L.; Lu, X. M.; Xia, Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2- or AuCl4-. Adv. Mater. 2008, 20, 2517–2522.

[43]

Tan, S. F.; Lin, G. H.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Real-time dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689–7695.

[44]

Wu, T. P.; Childers, D. J.; Gomez, C.; Karim, A. M.; Schweitzer, N. M.; Kropf, A. J.; Wang, H.; Bolin, T. B.; Hu, Y. F.; Kovarik, L. et al. General method for determination of the surface composition in bimetallic nanoparticle catalysts from the L Edge X-ray absorption near-edge spectra. ACS Catal. 2012, 2, 2433–2443.

[45]

Sá, J.; Vinek, H. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Appl. Catal. B Environ. 2005, 57, 247–256.

[46]

Liu, X. Y.; Wang, A. Q.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 2011, 278, 288–296.

[47]

Arango-Díaz, A.; Moretti, E.; Talon, A.; Storaro, L.; Lenarda, M.; Nú;ez, P.; Marrero-Jerez, J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Rodríguez-Castellón, E. Preferential CO oxidation (CO-PROX) catalyzed by CuO supported on nanocrystalline CeO2 prepared by a freeze-drying method. Appl. Catal. A Gen. 2014, 477, 54–63.

[48]

Gu, D.; Tseng, J. C.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Soulimani, F.; Weckhuysen, B. M.; Schüth, F. Gold on different manganese oxides: Ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J. Am. Chem. Soc. 2016, 138, 9572–9580.

[49]

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

[50]
Li, S. Preparation and characterization of bimetal MOF-74-Co/Cu and its toluene adsorption performances. J. Porous Mater., in press, https://doi.org/10.1007/s10934-022-01353-8.
[51]

Collinge, G.; Xiang, Y. Z.; Barbosa, R.; McEwen, J. S.; Kruse, N. CO-induced inversion of the layer sequence of a model CoCu catalyst. Surf. Sci. 2016, 648, 74–83.

[52]

Sandoval, A.; Delannoy, L.; Méthivier, C.; Louis, C.; Zanella, R. Synergetic effect in bimetallic Au-Ag/TiO2 catalysts for CO oxidation: New insights from in situ characterization. Appl. Catal. A Gen. 2015, 504, 287–294.

[53]

Brown, M. A.; Ringleb, F.; Fujimori, Y.; Sterrer, M.; Freund, H. J.; Preda, G.; Pacchioni, G. Initial formation of positively charged gold on MgO(001) thin films: Identification by experiment and structural assignment by theory. J. Phys. Chem. C 2011, 115, 10114–10124.

[54]

Prestianni, A.; Martorana, A.; Labat, F.; Ciofini, I.; Adamo, C. Theoretical insights on O2 and CO adsorption on neutral and positively charged gold clusters. J. Phys. Chem. B 2006, 110, 12240–12248.

[55]

Kuhn, M.; Sham, T. K. Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys. Rev. B 1994, 49, 1647–1661.

[56]

Wang, G. W.; Xiao, L.; Huang, B.; Ren, Z. D.; Tang, X.; Zhuang, L.; Lu, J. T. AuCu intermetallic nanoparticles: Surfactant-free synthesis and novel electrochemistry. J. Mater. Chem. 2012, 22, 15769–15774.

[57]

Liao, X. M.; Caps, V.; Chu, W.; Pitchon, V. Highly stable bimetallic Au-Cu supported on Al2O3 for selective CO oxidation in H2-rich gas: Effects of Cu/Au atomic ratio and sensitive influence of particle size. RSC Adv. 2016, 6, 4899–4907.

[58]

Delannoy, L.; Thrimurthulu, G.; Reddy, P. S.; Méthivier, C.; Nelayah, J.; Reddy, B. M.; Ricolleau, C.; Louis, C. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition–precipitation. Phys. Chem. Chem. Phys. 2014, 16, 26514–26527.

[59]

Ghodselahi, T.; Vesaghi, M. A.; Shafiekhani, A.; Baghizadeh, A.; Lameii, M. XPS study of the Cu@Cu2O core–shell nanoparticles. Appl. Surf. Sci. 2008, 255, 2730–2734.

[60]

Yu, J. F.; Yang, M.; Zhang, J. X.; Ge, Q. J.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J. D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 2020, 10, 14694–14706.

[61]

Wu, G. J.; Guan, N. J.; Li, L. D. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601–608.

[62]

Shtyka, O.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Dubkov, S.; Gromov, D.; Maniecki, T. Photocatalytic reduction of CO2 over me (Pt, Pd, Ni, Cu)/TiO2 catalysts. Top. Catal. 2020, 63, 113–120.

[63]

Zhang, X. P.; Wang, J. X.; Li, Z. F.; Cui, Y. Z.; Tan, B. J.; He, G. H. Effects of Ni modification on NO-CO reaction with MnOx-CuO/TiO2 catalysts. Can. J. Chem. Eng. 2018, 96, 1360–1366.

File
12274_2023_5672_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2023
Revised: 06 March 2023
Accepted: 15 March 2023
Published: 31 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the “Transformational Technologies for Clean Energy and Demonstration”, the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS, No. XDA21030900), DNL Cooperation Fund, CAS (No. DNL201903), and the National Natural Science Foundation of China (No. 51701201).

Return