Journal Home > Volume 16 , Issue 7

Owing to stable spatial framework and large electrochemical interface, self-supported transition metal chalcogenides have been actively explored in renewable energy fields, especially in oxygen evolution reaction (OER). Here, we review the research progress of self-supported transition metal chalcogenides (including sulfides, selenides, and tellurides) for the OER in recent years. The basic principle and evaluation parameters of OER are first introduced, and then the preparation methods of transition metal chalcogenides on various self-supporting substrates (including Ni foam (NF), carbon cloth (CC), carbon fiber paper (CFP), metal mesh/plate, etc.) are systematically summarized. Subsequently, advanced optimization strategies (including interface and defect engineering, heteroatom doping, edge engineering, surface morphology engineering, and construction of heterostructure) are introduced in detail to improve the inherent catalytic activity of self-supported electrocatalysts. Finally, the challenges and prospects of developing more promising self-supported chalcogenide electrocatalysts are proposed.


menu
Abstract
Full text
Outline
About this article

Self-supported transition metal chalcogenides for oxygen evolution

Show Author's information Ting Zhang1,2Jianrui Sun2( )Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China
School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China

Abstract

Owing to stable spatial framework and large electrochemical interface, self-supported transition metal chalcogenides have been actively explored in renewable energy fields, especially in oxygen evolution reaction (OER). Here, we review the research progress of self-supported transition metal chalcogenides (including sulfides, selenides, and tellurides) for the OER in recent years. The basic principle and evaluation parameters of OER are first introduced, and then the preparation methods of transition metal chalcogenides on various self-supporting substrates (including Ni foam (NF), carbon cloth (CC), carbon fiber paper (CFP), metal mesh/plate, etc.) are systematically summarized. Subsequently, advanced optimization strategies (including interface and defect engineering, heteroatom doping, edge engineering, surface morphology engineering, and construction of heterostructure) are introduced in detail to improve the inherent catalytic activity of self-supported electrocatalysts. Finally, the challenges and prospects of developing more promising self-supported chalcogenide electrocatalysts are proposed.

Keywords: heterostructure, heteroatom doping, oxygen evolution reaction (OER), interface and defect engineering, self-supported chalcogenide

References(271)

[1]

Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

[2]

Xie, X. H.; Du, L.; Yan, L. T.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036.

[3]

Zhang, Y.; Zhu, X. J.; Zhang, G. L.; Shi, P. D.; Wang, A. L. Rational catalyst design for oxygen evolution under acidic conditions: Strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 2021, 9, 5890–5914.

[4]

Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater Sci. 2021, 116, 100717.

[5]

Kang, Z. M.; Khan, M. A.; Gong, Y. M.; Javed, R.; Xu, Y.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108.

[6]

Shiraz, H. G.; Crispin, X.; Berggren, M. Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 24060–24077.

[7]

Xu, Q. C.; Zhang, J. H.; Zhang, H. X.; Zhang, L. Y.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 14, 5228–5259.

[8]

Han, J. Y.; Zhang, M. Z.; Bai, X.; Duan, Z. Y.; Tang, T. M.; Guan, J. Q. Mesoporous Mn-Fe oxyhydroxides for oxygen evolution. Inorg. Chem. Front. 2022, 9, 3559–3565.

[9]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, 9120001.

[10]

Chen, Q. R.; Yu, Y. H.; Li, J.; Nan, H. X.; Luo, S. X.; Jia, C. M.; Deng, P. L.; Zhong, S. K.; Tian, X. L. Recent progress in layered double hydroxide-based electrocatalyst for hydrogen evolution reaction. ChemElectroChem 2022, 9, e202101387.

[11]

Xia, H.; Shi, Z. D.; Gong, C. S.; He, Y. M. Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. J. Mater. Chem. A 2022, 10, 19067–19089.

[12]

Zhang, L. S.; Shi, Z.; Lin, Y. P.; Chong, F. L.; Qi, Y. H. Design strategies for large current density hydrogen evolution reaction. Front. Chem. 2022, 10, 866415.

[13]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[14]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[15]

Lamy, C.; Millet, P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions. J. Power Sources 2020, 447, 227350.

[16]

Andaveh, R.; Barati Darband, G.; Maleki, M.; Sabour Rouhaghdam, A. Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: A comprehensive review. J. Mater. Chem. A 2022, 10, 5147–5173.

[17]

Liu, X.; Zhang, X. Y.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Recent advances in the “on-off” approaches for on-demand liquid-phase hydrogen evolution. J. Mater. Chem. A 2021, 9, 18164–18174.

[18]

Mao, M.; Xu, J.; Li, L. J.; Zhao, S.; Li, X. H. The p-n heterojunction constructed by NiMnO3 nanoparticles and Ni3S4 to promote charge separation and efficient catalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 23190–23204.

[19]

Zhang, H. Y.; Song, F. Recent advances in photo-assisted electrocatalysts for energy conversion. J. Mater. Chem. A 2021, 9, 27193–27214.

[20]

Li, R. P.; Li, Y.; Yang, P. X.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J. Q.; An, M. Z. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 2021, 57, 547–566.

[21]

Li, Y. Z.; Niu, S. Q.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S. J.; Song, B.; Xu, P. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 2018, 10, 7291–7297.

[22]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[23]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Electronic structure regulation of single-site M-N-C electrocatalysts for carbon dioxide reduction. Acta Phys. Chim. Sin. 2023, 39, 2208033.

[24]

Meng, L.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1, 9120020.

[25]

Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

[26]

Lian, Y. B.; Sun, H.; Wang, X. B.; Qi, P. W.; Mu, Q. Q.; Chen, Y. J.; Ye, J.; Zhao, X. H.; Deng, Z.; Peng, Y. Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 2019, 10, 464–474.

[27]

Yao, D. X.; Gu, L. L.; Zuo, B.; Weng, S.; Deng, S. W.; Hao, W. J. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale 2021, 13, 10624–10648.

[28]

Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

[29]

Wang, W. F.; Yang, Z.; Jiao, F. X.; Gong, Y. Q. (P, W)-codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Appl Surf Sci. 2020, 529, 146987.

[30]

Zhang, Q. Q.; Qi, H.; Hou, C. M.; Liu, N.; Guan, J. Q. High-performance Fe-Co-Sn oxide electrocatalysts for oxygen evolution reaction. Mater. Today Energy 2019, 14, 100364.

[31]

Luo, J.; Guo, W. H.; Zhang, Q.; Wang, X. H.; Shen, L.; Fu, H. C.; Wu, L. L.; Chen, X. H.; Luo, H. Q.; Li, N. B. One-pot synthesis of Mn-Fe bimetallic oxide heterostructures as bifunctional electrodes for efficient overall water splitting. Nanoscale 2020, 12, 19992–20001.

[32]

Yang, Y. Y.; Zhu, C. M.; Zhang, Y.; Xie, Y. D.; Lv, L. W.; Chen, W. L.; He, Y. Y.; Hu, Z. Construction of Co3O4/Fe2O3 nanosheets on nickel foam as efficient electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. Solids 2021, 148, 109680.

[33]

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

[34]

Youn, D. H.; Park, Y. B.; Kim, J. Y.; Magesh, G.; Jang, Y. J.; Lee, J. S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J. Power Sources 2015, 294, 437–443.

[35]

Li, D. D.; Hao, G. Y.; Guo, W. J.; Liu, G.; Li, J. P.; Zhao, Q. Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. J. Power Sources 2020, 448, 227434.

[36]

Yang, J. H.; Xu, X. H.; Chen, M. M.; Yang, D.; Lu, H. Y.; Sun, Y. Z.; Shao, C.; Song, Q. Q.; Zhang, J.; Gao, L. et al. Morphology-controllable nanocrystal β-Ni(OH)2/NF designed by hydrothermal etching method as high-efficiency electrocatalyst for overall water splitting. J. Electroanal. Chem. 2021, 882, 115035.

[37]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[38]

Wang, S.; Xue, W. D.; Fang, Y.; Li, Y. Q.; Yan, L. L.; Wang, W. J.; Zhao, R. Bismuth activated succulent-like binary metal sulfide heterostructure as a binder-free electrocatalyst for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 2020, 573, 150–157.

[39]

Yang, Y. Y.; Meng, H. X.; Kong, C.; Yan, S. H.; Ma, W. X.; Zhu, H.; Ma, F. Q.; Wang, C. J.; Hu, Z. A. Heterogeneous Ni3S2@FeNi2S4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J. Colloid Interface Sci. 2021, 599, 300–312.

[40]

Fan, A. R.; Hou, T. Y.; Sun, X. H.; Xie, D. L.; Li, X.; Zhang, N.; Guo, J. Z.; Jin, S. B.; Zhou, Y. M.; Cai, S. et al. One-pot hydrothermal synthesis of ZnS nanospheres anchored on 3D conductive MWCNTs networks as high-rate and cold-resistant anode materials for sodium-ion batteries. ChemElectroChem 2020, 7, 1904–1913.

[41]

Yang, Y. Y.; Meng, H. X.; Yan, S. H.; Zhu, H.; Ma, W. X.; Wang, C. J.; Ma, F. Q.; Hu, Z. The in-situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2021, 874, 159874.

[42]

Wang, N.; Li, L. G.; Zhao, D. K.; Kang, X. W.; Tang, Z. H.; Chen, S. W. Graphene composites with cobalt sulfide: Efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Small 2017, 13, 1701025.

[43]

Li, Y.; Zhao, Y.; Li, F. M.; Dang, Z. Y.; Gao, P. Q. Ultrathin NiSe nanosheets on Ni foam for efficient and durable hydrazine-assisted electrolytic hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 34457–34467.

[44]

Guo, K. L.; Wang, Y. T.; Yang, S. Z.; Huang, J. F.; Zou, Z. H.; Pan, H. R.; Shinde, P. S.; Pan, S. L.; Huang, J. E.; Xu, C. L. Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation. Sci. Bull. 2021, 66, 52–61.

[45]

Das, M.; Kumar, G.; Dey, R. S. Electrochemical growth and formation mechanism of Cu2Se/CoSe2-based bifunctional electrocatalyst: A strategy for the development of efficient material toward water electrolysis. ACS Appl. Energy Mater. 2022, 5, 3915–3925.

[46]

Hu, C. S.; Chen, J.; Wang, Y. Q.; Huang, Y.; Wang, S. T. A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochim. Acta 2022, 404, 139606.

[47]

Hu, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B:Environ. 2020, 273, 119014.

[48]

Guo, P.; Cao, S. F.; Wang, Y. J.; Lu, X. Q.; Zhang, Y. Z.; Xin, X.; Chi, X.; Yu, X. J.; Tojiboyev, I.; Salari, H. et al. Surface self-reconstruction of telluride induced by in-situ cathodic electrochemical activation for enhanced water oxidation performance. Appl. Catal. B:Environ. 2022, 310, 121355.

[49]

Chen, Z. L.; Chen, M.; Yan, X. X.; Jia, H. X.; Fei, B.; Ha, Y.; Qing, H.; Yang, H. Y.; Liu, M.; Wu, R. B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 2020, 14, 6968–6979.

[50]

Papaderakis, A.; Matouli, I.; Spyridou, O. N.; Grammenos, A. O.; Banti, A.; Touni, A.; Pliatsikas, N.; Patsalas, P.; Sotiropoulos, S. Ternary IrO2-Pt-Ni deposits prepared by galvanic replacement as bifunctional oxygen catalysts. J. Electroanal. Chem. 2020, 877, 114499.

[51]

Rivera-Gavidia, L. M.; Fernández De La Puente, I.; Hernández-Rodríguez, M. A.; Celorrio, V.; Sebastián, D.; Lázaro, M. J.; Pastor, E.; García, G. Bi-functional carbon-based catalysts for unitized regenerative fuel cells. J. Catal. 2020, 387, 138–144.

[52]

Tang, T. M.; Duan, Z. Y.; Baimanov, D.; Bai, X.; Liu, X. Y.; Wang, L. M.; Wang, Z. L.; Guan, J. Q. Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Res. 2023, 16, 2218–2223.

[53]

Peugeot, A.; Creissen, C. E.; Schreiber, M. W.; Fontecave, M. Advancing the anode compartment for energy efficient CO2 reduction at neutral pH. ChemElectroChem 2021, 8, 2726–2736.

[54]

Yang, G. Q.; Yu, S. L.; Li, Y. F.; Li, K.; Ding, L.; Xie, Z. Q.; Wang, W. T.; Dohrmann, Y.; Zhang, F. Y. A simple convertible electrolyzer in membraneless and membrane-based modes for understanding water splitting mechanism. J. Power Sources 2021, 487, 229353.

[55]

Kwon, J.; Han, H.; Choi, S.; Park, K.; Jo, S.; Paik, U.; Song, T. Current status of self-supported catalysts for robust and efficient water splitting for commercial electrolyzer. ChemCatChem 2019, 11, 5898–5912.

[56]

Wang, P. C.; Jia, T.; Wang, B. G. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J. Power Sources 2020, 474, 228621.

[57]

Wu, L. B.; Yu, L.; Xiao, X.; Zhang, F. H.; Song, S. W.; Chen, S.; Ren, Z. F. Recent advances in self-supported layered double hydroxides for oxygen evolution reaction. Research 2020, 2020, 3976278.

[58]

Liu, W. W.; Lu, C. X.; Wang, X. L.; Liang, K.; Tay, B. K. In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J. Mater. Chem. A 2015, 3, 624–633.

[59]

Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

[60]

Guo, Y.; Zhou, S.; Zhao, J. J. Oxidation behaviors of two-dimensional metal chalcogenides. ChemNanoMat 2020, 6, 838–849.

[61]

Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

[62]

Han, J. Y.; Guan, J. Q. A macro library for monatomic catalysts. Chin. J. Catal. 2023, 44, 1–3.

[63]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[64]

Zhao, Y.; Wei, S. Z.; Pan, K. M.; Dong, Z. L.; Zhang, B.; Wu, H. H.; Zhang, Q. B.; Lin, J. P.; Pang, H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 2021, 421, 129645.

[65]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.

[66]

Bai, X.; Guan, J. Applications of MXene-based single-atom catalysts. Small Struct. 2023, 2200354.

[67]

Bagheri, R.; Hussain, N.; Wattoo, A. G.; Assefi Pour, R.; Xu, C.; Song, Z. L. Introducing a self-improving catalyst for hydrogen evolution and efficient catalyst for oxygen evolution reaction. J. Mol. Liq. 2021, 334, 116511.

[68]
Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.
[69]

Shit, S.; Chhetri, S.; Jang, W.; Murmu, N. C.; Koo, H.; Samanta, P.; Kuila, T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: An efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 10, 27712–27722.

[70]

Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R. A. Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater. 2017, 27, 1700451.

[71]

Jiang, J. Y.; Yan, C. Y.; Zhao, X. H.; Luo, H. X.; Xue, Z. M.; Mu, T. C. A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction. Green Chem. 2017, 19, 3023–3031.

[72]

Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29, 1808367.

[73]

Yang, Q.; Li, T.; Lu, Z. Y.; Sun, X. M.; Liu, J. F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 2014, 6, 11789–11794.

[74]

Nisar, L.; Sadaqat, M.; Hassan, A.; Babar, N. U. A.; Shah, A.; Najam-Ul-Haq, M.; Ashiq, M. N.; Ehsan, M. F.; Joya, K. S. Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel 2020, 280, 118666.

[75]

Tang, T. M.; Zhang, Q. Q.; Bai, X.; Wang, Z. L.; Guan, J. Q. Enhanced oxygen evolution activity on mesoporous cobalt-iron oxides. Chem. Commun. 2021, 57, 11843–11846.

[76]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[77]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[78]

Qiao, C.; Hao, Y. Y.; Cao, C. B.; Zhang, J. T. Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: Recent progress and perspectives. Nanoscale 2023, 15, 450–460.

[79]

Yoo, J. S.; Rong, X.; Liu, Y. S.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018, 8, 4628–4636.

[80]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[81]

Wu, J.; Zhang, Y. Y.; Zhang, B.; Li, S. W.; Xu, P. Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: Understanding the doping effect for a precatalyst. ACS Appl. Mater. Interfaces 2022, 14, 14235–14242.

[82]

Ji, Q. Q.; Kong, Y.; Tan, H.; Duan, H. L.; Li, N.; Tang, B.; Wang, Y.; Feng, S. H.; Lv, L. Y.; Wang, C. et al. Operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density. ACS Catal. 2022, 12, 4318–4326.

[83]

Zhang, X. Y.; Yu, W. L.; Zhao, J.; Dong, B.; Liu, C. G.; Chai, Y. M. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl. Mater. Today 2021, 22, 100913.

[84]

Di, J.; Yan, C.; Handoko, A. D.; Seh, Z. W.; Li, H. M.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today 2018, 21, 749–770.

[85]

Cheng, H.; Zhou, H.; Zhuang, Y. Y.; Chen, B. Y.; Chen, J. F.; Yuan, A. H. Controllable synthesis and phase-dependent electrocatalytic oxygen evolution performance of CoNiFe sulfide nanocubes. J. Alloys Compd. 2022, 909, 164774.

[86]

Wang, D. D.; Zhang, H.; Liu, G. Y.; Liu, Y.; Shan, D. F.; Shen, G. X.; Peng, S. L.; Wang, L. F.; Wang, X. D. Tuning the Co3+/Co2+ ratios of the CoSx/CNT nanocomposites for efficient oxygen evolution reaction (OER). Mater. Lett. 2022, 318, 132108.

[87]

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

[88]

Chen, M.; Hu, Y. P.; Liang, K.; Zhao, Z. M.; Luo, Y. T.; Luo, S.; Ma, J. T. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution. Nanoscale 2021, 13, 18763–18772.

[89]

Shi, W. H.; Lian, J. S. Facile synthesis of copper selenide with fluffy intersected-nanosheets decorating nanotubes structure for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 22983–22990.

[90]

Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Sun, J. Y.; Zhu, Z.; He, R.; Bao, J. M.; Goddard, W. A.; Chen, S.; Ren, Z. F. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ. Sci. 2017, 10, 1487–1492.

[91]

Alobaid, A.; Wang, C. S.; Adomaitis, R. A. Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte. J. Electrochem. Soc. 2018, 165, J3395.

[92]

Sadaqat, M.; Nisar, L.; Babar, N. U. A.; Hussain, F.; Ashiq, M. N.; Shah, A.; Ehsan, M. F.; Najam-Ul-Haq, M.; Joya, K. S. Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J. Mater. Chem. A 2019, 7, 26410–26420.

[93]

Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.

[94]

Anantharaj, S.; Karthik, P. E.; Kundu, S. Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: A highly efficient OER electrocatalyst. Catal. Sci. Technol. 2017, 7, 882–893.

[95]

Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

[96]

Manivelan, N.; Karuppanan, S.; Prabakar, K. Djurleite copper sulfide-coupled cobalt sulfide interface for a stable and efficient electrocatalyst. ACS Appl. Mater. Interfaces 2022, 14, 30812–30823.

[97]

Wei, L.; Goh, K.; Birer, Ö.; Karahan, H. E.; Chang, J.; Zhai, S. L.; Chen, X. C.; Chen, Y. A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale 2017, 9, 4401–4408.

[98]

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

[99]

Wang, P. Y.; Qin, R.; Ji, P. X.; Pu, Z. H.; Zhu, J. W.; Lin, C.; Zhao, Y. F.; Tang, H. L.; Li, W. Q.; Mu, S. C. Synergistic coupling of Ni nanoparticles with Ni3C nanosheets for highly efficient overall water splitting. Small 2020, 16, 2001642.

[100]

Li, S. L.; Xu, C. X.; Zhou, Q. L.; Liu, Z.; Yang, Z. X.; Gu, Y.; Ma, Y. P.; Xu, W. J. Rational design of self-supported WC/Co3W3N/Co@NC yolk/shell nitrogen-doped porous carbon catalyst for highly efficient overall water splitting. J. Alloys Compd. 2022, 902, 163627.

[101]

Xie, M. W.; Ma, Y.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Zeng, W. Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction. Nanoscale 2020, 12, 67–71.

[102]

Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

[103]

Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.

[104]

Yu, R.; Wang, C.; Liu, D. M.; Wu, Z. Y.; Li, J.; Du, Y. K. Bimetallic sulfide particles incorporated in Fe/Co-based metal-organic framework ultrathin nanosheets toward boosted electrocatalysis of the oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 3130–3137.

[105]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[106]

Rauf, M.; Pi, L. L.; Wang, J. W.; Mi, H. W.; Zhang, Q. L.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Zeolitic-imidazolate frameworks-derived Co3S4/NiS@Ni foam heterostructure as highly efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 13616–13628.

[107]

Chen, J. L.; Wang, Y. M.; Qian, G. F.; Yu, T. Q.; Wang, Z. L.; Luo, L.; Shen, F.; Yin, S. B. In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density. Chem. Eng. J. 2021, 421, 129892.

[108]

Zhang, Q.; Yan, D. F.; Nie, Z. Z.; Qiu, X. B.; Wang, S. Y.; Yuan, J. M.; Su, D. W.; Wang, G. X.; Wu, Z. J. Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 571–579.

[109]

Browne, M. P.; Vasconcelos, J. M.; Coelho, J.; O'Brien, M.; Rovetta, A. A.; McCarthy, E. K.; Nolan, H.; Duesberg, G. S.; Nicolosi, V.; Colavita, P. E. et al. Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustainable Energy Fuels 2017, 1, 207–216.

[110]

Song, S. W.; Wang, Y. H.; Li, W.; Tian, P. F.; Zhou, S. Y.; Gao, H. W.; Tian, X. Q.; Zang, J. B. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting. Electrochim. Acta 2020, 332, 135454.

[111]

Hu, J.; Zhu, S. L.; Liang, Y. Q.; Wu, S. L.; Li, Z. Y.; Luo, S. Y.; Cui, Z. D. Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2021, 587, 79–89.

[112]

Shang, X.; Hu, W. H.; Han, G. Q.; Liu, Z. Z.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, C. G. Crystalline phase-function relationship of in situ growth NixSy controlled by sulfuration degree for oxygen evolution reaction. Int. J. Hydrogen Energy 2016, 41, 13032–13038.

[113]

Qin, K. Q.; Wang, L. P.; Wen, S. W.; Diao, L. C.; Liu, P.; Li, J. J.; Ma, L. Y.; Shi, C. S.; Zhong, C.; Hu, W. B. et al. Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. J. Mater. Chem. A 2018, 6, 8109–8119.

[114]

Guo, P.; Wu, J.; Li, X. B.; Luo, J.; Lau, W. M.; Liu, H.; Sun, X. L.; Liu, L. M. A highly stable bifunctional catalyst based on 3D Co(OH)2@NCNTs@NF towards overall water-splitting. Nano Energy 2018, 47, 96–104.

[115]
Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019, 60, 385–393.
[116]

Zhou, J. H.; Wang, Z. G.; Yang, D. X.; Zhang, W. L.; Chen, Y. F. Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2019, 317, 408–415.

[117]
Ali, Z.; Mehmood, M.; Ahmad, J.; Malik, T. S.; Ahmad, B. In-situ growth of novel CNTs-graphene hybrid structure on Ni-silica nanocomposites by CVD method for oxygen evolution reaction. Ceram. Int. 2020, 46, 19158–19169.
[118]

Liu, X. B.; Yue, T.; Qi, K.; Qiu, Y. B.; Xia, B. Y.; Guo, X. P. Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chin. Chem. Lett. 2020, 31, 2189–2201.

[119]

Wang, J.; Kim, J.; Choi, S.; Wang, H. S.; Lim, J. A review of carbon-supported nonprecious metals as energy-related electrocatalysts. Small Methods 2020, 4, 2000621.

[120]

Li, H. X.; Han, X.; Zhao, W.; Azhar, A.; Jeong, S.; Jeong, D.; Na, J.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. Mater. Horiz. 2022, 9, 1788–1824.

[121]

Shang, X.; Yan, K. L.; Lu, S. S.; Dong, B.; Gao, W. K.; Chi, J. Q.; Liu, Z. Z.; Chai, Y. M.; Liu, C. G. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53.

[122]

Xu, S. S.; Lv, X. W.; Zhao, Y. M.; Ren, T. Z.; Yuan, Z. Y. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. J. Energy Chem. 2021, 52, 139–146.

[123]

Liu, T. J.; Ding, J. W.; Su, Z. Q.; Wei, G. Porous two-dimensional materials for energy applications: Innovations and challenges. Mater. Today Energy 2017, 6, 79–95.

[124]

Kwon, O.; Choi, Y.; Choi, E.; Kim, M.; Woo, Y. C.; Kim, D. W. Fabrication techniques for graphene oxide-based molecular separation membranes: Towards industrial application. Nanomaterials 2021, 11, 757.

[125]

Kong, P.; Zhu, L.; Li, F. R.; Xu, G. B. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. ChemElectroChem 2019, 6, 5642–5650.

[126]

Topçu, E.; Kıranşan, K. D. Flexible and free-standing PtNLs-MoS2/reduced graphene oxide composite paper: A high-performance rolled paper catalyst for hydrogen evolution reaction. ChemistrySelect 2018, 3, 5941–5949.

[127]

Tian, W. L.; Li, H. Y.; Qin, B. C.; Xu, Y. Q.; Hao, Y. C.; Li, Y. P.; Zhang, G. X.; Liu, J. F.; Sun, X. M.; Duan, X. Tuning the wettability of carbon nanotube arrays for efficient bifunctional catalysts and Zn-air batteries. J. Mater. Chem. A 2017, 5, 7103–7110.

[128]

Zhang, G. Q.; Xing, J. Y.; Zhao, Y. Y.; Yang, F. L. Hierarchical N, P co-doped graphene aerogels framework assembling vertically grown CoMn-LDH nanosheets as efficient bifunctional electrocatalyst for rechargeable Zinc-air battery. J. Colloid Interface Sci. 2021, 590, 476–486.

[129]

Pittkowski, R.; Divanis, S.; Klementová, M.; Nebel, R.; Nikman, S.; Hoster, H.; Mukerjee, S.; Rossmeisl, J.; Krtil, P. Engendering unprecedented activation of oxygen evolution via rational pinning of Ni oxidation state in prototypical perovskite: Close juxtaposition of synthetic approach and theoretical conception. ACS Catal. 2021, 11, 985–997.

[130]
Shudo, Y.; Fukuda, M.; Islam, M. S.; Kuroiwa, K.; Sekine, Y.; Karim, M. R.; Hayami, S. 3D porous Ni/NiOx as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH)2. Nanoscale 2021, 13, 5530–5535.
[131]

Poorahong, S.; Harding, D. J.; Keawmorakot, S.; Siaj, M. Free standing bimetallic nickel cobalt selenide nanosheets as three-dimensional electrocatalyst for water splitting. J. Electroanal. Chem. 2021, 897, 115568.

[132]

Hu, X. J.; Li, T. C.; Tang, Y. D.; Wang, Y. R.; Wang, A.; Fu, G. T.; Li, X. D.; Tang, Y. W. Hydrogel-derived honeycomb Ni3S4/N, P-C as an efficient oxygen evolution catalyst. Chem. -Eur. J. 2019, 25, 7561–7568.

[133]

Yan, B.; Zheng, J. J.; Wang, F.; Zhao, L. Y.; Zhang, Q.; Xu, W. H.; He, S. J. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Mater. Des. 2021, 201, 109518.

[134]

Ma, Y. L.; Zhang, Y.; Wang, X.; Fan, M. H.; Li, K. Q.; Wang, T.; Liu, Y. L.; Huo, Q. S.; Qiao, Z. A.; Dai, S. A chelation-induced cooperative self-assembly methodology for the synthesis of mesoporous metal hydroxide and oxide nanospheres. Nanoscale 2018, 10, 5731–5737.

[135]

Li, G. F.; Yu, H. M.; Wang, X. Y.; Yang, D. L.; Li, Y. K.; Shao, Z. G.; Yi, B. L. Triblock polymer mediated synthesis of Ir-Sn oxide electrocatalysts for oxygen evolution reaction. J. Power Sources 2014, 249, 175–184.

[136]

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

[137]

Riaz, M. S.; Zhao, S. W.; Dong, C. L.; Nong, S. Y.; Zhao, Y. T.; Iqbal, M. J.; Huang, F. Q. ZnO-templated selenized and phosphorized cobalt-nickel oxide microcubes as rapid alkaline water oxidation electrocatalysts. Chem. -Eur. J. 2020, 26, 1306–1313.

[138]

Amer, M. S.; Arunachalam, P.; Ghanem, M. A.; Al-Shalwi, M.; Ahmad, A.; Alharthi, A. I.; Al-Mayouf, A. M. Synthesis of iron and vanadium co-doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation. Int. J. Energy Res. 2021, 45, 9422–9437.

[139]

Feng, X. J.; Hu, Z.; Shi, Y. L.; Wang, X. T.; Hou, L. J.; Zhang, Y. L.; Ma, W. X. Construction of hierarchical nickel/cobalt iron-hydroxide and nickel/cobalt selenide nanotubes for efficient electrocatalytic water splitting. New J. Chem. 2020, 44, 7552–7560.

[140]

Han, Y.; Chen, X.; Qian, C.; Zhang, X. Y.; He, W.; Ren, H. J.; Li, H. B.; Diao, G. W.; Chen, M. Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: An efficient oxygen evolution electrocatalyst. Chem. Eng. J. 2021, 420, 130461.

[141]

Yan, K. L.; Qin, J. F.; Liu, Z. Z.; Dong, B.; Chi, J. Q.; Gao, W. K.; Lin, J. H.; Chai, Y. M.; Liu, C. G. Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 2018, 334, 922–931.

[142]

Zhang, R. L.; Duan, J. J.; Feng, J. J.; Mei, L. P.; Zhang, Q. L.; Wang, A. J. Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction. J. Colloid Interface Sci. 2021, 587, 141–149.

[143]

Xie, N.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Facile construction of self-supported Fe-doped Ni3S2 nanoparticle arrays for the ultralow-overpotential oxygen evolution reaction. Nanoscale 2021, 13, 1807–1812.

[144]

Chen, Q. Y.; Huang, L.; Kong, Q. Q.; An, X. G.; Wu, X. Q.; Yao, W. T.; Sun, C. H. Facile synthesis of self support Fe doped Ni3S2 nanosheet arrays for high performance alkaline oxygen evolution. J. Electroanal. Chem. 2022, 907, 116047.

[145]

Pan, Z. Y.; Yaseen, M.; Shen, P. K.; Zhan, Y. Z. Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. J. Colloid Interface Sci. 2022, 616, 422–432.

[146]

Tang, M. Y.; Liu, Y.; Cao, H.; Zheng, Q. J.; Wei, X. J.; Lam, K. H.; Lin, D. M. Cu2S/Ni3S2 ultrathin nanosheets on Ni foam as a highly efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 3013–3021.

[147]

Ren, H. N.; Yu, L. X.; Yang, L. P.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. J. Energy Chem. 2021, 60, 194–201.

[148]

Zhao, J.; Yang, L. N.; Li, H. Y.; Huang, T. Q.; Cheng, H.; Meng, A. L.; Lin, Y. S.; Wu, P.; Yuan, X. C.; Li, Z. J. Ni3Se2 nanosheets in-situ grown on 3D NiSe nanowire arrays with enhanced electrochemical performances for supercapacitor and efficient oxygen evolution. Mater. Charact. 2021, 172, 110819.

[149]

Zhou, T. N.; Bai, J.; Gao, Y. H.; Zhao, L. X.; Jing, X. F.; Gong, Y. Q. Selenide-based 3D folded polymetallic nanosheets for a highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 2022, 615, 256–264.

[150]

Qian, G. F.; Mo, Y. S.; Yu, C.; Zhang, H.; Yu, T. Q.; Luo, L.; Yin, S. B. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction. Renewable Energy 2020, 162, 2190–2196.

[151]

Yang, L.; Xu, H. X.; Liu, H. B.; Cheng, D. J.; Cao, D. P. Active site identification and evaluation criteria of in situ grown CoTe and NiTe nanoarrays for hydrogen evolution and oxygen evolution reactions. Small Methods 2019, 3, 1900113.

[152]

Sadaqat, M.; Manzoor, S.; Nisar, L.; Hassan, A.; Tyagi, D.; Shah, J. H.; Ashiq, M. N.; Joya, K. S.; Alshahrani, T.; Najam-Ul-Haq, M. Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim. Acta 2021, 371, 137830.

[153]

Kim, M.; Park, D.; Kim, J. A thermoelectric generator comprising selenium-doped bismuth telluride on flexible carbon cloth with n-type thermoelectric properties. Ceram. Int. 2022, 48, 10852–10861.

[154]

Pang, S. Y.; Lin, L. Y.; Shen, Y. Q.; Chen, S. S.; Chen, W.; Tan, N.; Ahmad, A.; Al-Kahtani, A. A.; Tighezza, A. M. Surface activated commercial carbon cloth as superior electrodes for symmetric supercapacitors. Mater. Lett. 2022, 315, 131985.

[155]

Song, M. K.; Yim, J. H.; Baek, S. H.; Lee, J. W. A carbon cloth with a coating layer containing aluminum fluoride as an interlayer for lithium metal batteries. Appl. Surf. Sci. 2022, 588, 152935.

[156]

Wang, D. S.; Li, J. M.; Li, X.; Wang, Q.; Liu, P. High performance flexible carbon cloth-based solid-state supercapacitors with redox-mediated gel electrolytes. Appl. Surf. Sci. 2022, 583, 152397.

[157]

Wu, X. Y.; Wang, C. C.; Wang, Z.; Qin, Y.; Kong, Y. Nanostructured Co9S8/polypyrrole hybrids grown on carbon cloth for battery-type supercapacitor electrode. Synth. Met. 2022, 286, 117034.

[158]

Qian, H.; Wu, B. X.; Nie, Z. W.; Liu, T. T.; Liu, P.; He, H.; Wu, J. H.; Chen, Z. Y.; Chen, S. G. A flexible Ni3S2/Ni@CC electrode for high-performance battery-like supercapacitor and efficient oxygen evolution reaction. Chem. Eng. J. 2021, 420, 127646.

[159]

Jiang, S.; Shao, H.; Cao, G. Y.; Li, H.; Xu, W. L.; Li, J. L.; Fang, J.; Wang, X. G. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 2020, 59, 92–99.

[160]

Zhan, C. H.; Liu, Z.; Zhou, Y.; Guo, M. L.; Zhang, X. L.; Tu, J. C.; Ding, L.; Cao, Y. Triple hierarchy and double synergies of NiFe/Co9S8/carbon cloth: A new and efficient electrocatalyst for the oxygen evolution reaction. Nanoscale 2019, 11, 3378–3385.

[161]

Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

[162]

Yan, Q.; Yan, P.; Wei, T.; Wang, G. L.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Li, Y. J. A highly efficient and durable water splitting system: Platinum sub-nanocluster functionalized nickel-iron layered double hydroxide as the cathode and hierarchical nickel-iron selenide as the anode. J. Mater. Chem. A 2019, 7, 2831–2837.

[163]

Ghosh, S.; Samanta, M.; Das, B.; Maity, S.; Howli, P.; Sarkar, S.; Chattopadhyay, K. K. Hexagonal nickel selenide nanoflakes decorated carbon fabric: An efficient binder-free water loving electrode for electrochemical water splitting. Solid State Sci. 2021, 116, 106613.

[164]

Wan, Z. X.; He, Q. T.; Qu, Y.; Dong, J. X.; Shoko, E.; Yan, P. X.; Taylor Isimjan, T.; Yang, X. L. Designing coral-like Fe2O3-regulated Se-rich CoSe2 heterostructure as a highly active and stable oxygen evolution electrocatalyst for overall water splitting. J. Electroanal. Chem. 2022, 904, 115928.

[165]

Liu, Z. Y.; He, Y. J.; Yao, C. M.; Ji, X. Y.; Zhao, B.; Gao, D. J.; Koudakan, P. A. Self-supported Cu-Ni-Se nanostuctures on carbon cloth derived from Cu-Ni-MOF nanorectangles with exceptional electrocatalytic performance for oxygen evolution reaction. J. Phys. Chem. Solids 2022, 163, 110602.

[166]

Yang, L.; Qin, H. Y.; Dong, Z. H.; Wang, T. Z.; Wang, G. C.; Jiao, L. F. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small 2021, 17, 2102027.

[167]

Xu, J.; Yin, Y. Q.; Xiong, H. Q.; Du, X. D.; Jiang, Y. J.; Guo, W.; Wang, Z.; Xie, Z. Z.; Qu, D. Y.; Tang, H. L. et al. Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2019, 490, 516–521.

[168]

Wu, T. L.; Pi, M. Y.; Zhang, D. K.; Chen, S. J. 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. J. Mater. Chem. A 2016, 4, 14539–14544.

[169]

Cao, N.; Chen, S.; Di, Y. M.; Li, C.; Qi, H.; Shao, Q. G.; Zhao, W. M.; Qin, Y. J.; Zang, X. B. High efficiency in overall water-splitting via Co-doping heterointerface-rich NiS2/MoS2 nanosheets electrocatalysts. Electrochim. Acta 2022, 425, 140674.

[170]

Yang, H.; Lin, K. D.; Zhou, Z. H.; Peng, C. T.; Peng, S. M.; Sun, M.; Yu, L. Surface phosphorization of Ni-Co-S as an efficient bifunctional electrocatalyst for full water splitting. Dalton Trans. 2021, 50, 16578–16586.

[171]

Guo, Y. J.; Guo, D.; Ye, F.; Wang, K.; Shi, Z. Q. Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrode for water splitting. Int. J. Hydrogen Energy 2017, 42, 17038–17048.

[172]

Li, W. R.; Zhao, H. F.; Li, H.; Wang, R. M. Fe doped NiS nanosheet arrays grown on carbon fiber paper for a highly efficient electrocatalytic oxygen evolution reaction. Nanoscale Adv. 2022, 4, 1220–1226.

[173]

Huang, N.; Yan, S. F.; Yang, L.; Zhang, M. Y.; Sun, P. P.; Lv, X. W.; Sun, X. H. Morphology and defect modification on in-situ derived Co9S8-porous nitrogen-doped carbon as a bifunctional electrocatalyst for oxygen evolution and reduction. J. Solid State Chem. 2020, 285, 121185.

[174]

Liu, Z. C.; Zhang, J. F.; Liu, Y. X.; Zhu, W. K.; Zhang, X. W.; Wang, Q. F. Electrodeposition of cobalt phosphosulfide nanosheets on carbon fiber paper as efficient electrocatalyst for oxygen evolution. ChemElectroChem 2018, 5, 1677–1682.

[175]

Huang, Y. Z.; Huang, J. C.; Xu, K. S.; Geng, R. R. Constructing NiSe2@MoS2 nano-heterostructures on a carbon fiber paper for electrocatalytic oxygen evolution. RSC Adv. 2021, 11, 26928–26936.

[176]

Sancho, H.; Zhang, Y.; Liu, L. D.; Barevadia, V. G.; Wu, S. Y.; Zhang, Y. M.; Huang, P. W.; Zhang, Y. F.; Wu, T. H.; You, W. Q. et al. NiCo2Se4 nanowires as a high-performance bifunctional oxygen electrocatalyst. J. Electrochem. Soc. 2020, 167, 056503.

[177]

Ganguli, S.; Ghosh, S.; Das, S.; Mahalingam, V. Inception of molybdate as a “pore forming additive” to enhance the bifunctional electrocatalytic activity of nickel and cobalt based mixed hydroxides for overall water splitting. Nanoscale 2019, 11, 16896–16906.

[178]

Zhang, L.; Xie, L. S.; Ma, M.; Qu, F. L.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte. Catal. Sci. Technol. 2017, 7, 2689–2694.

[179]

Dong, Y. C.; Ji, S.; Wang, H.; Linkov, V.; Wang, R. F. In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting. Dalton Trans. 2022, 51, 9681–9688.

[180]

Jović, V. D.; Jović, B. M.; Lačnjevac, U. Č.; Krstajić, N. V.; Zabinski, P.; Elezović, N. R. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. J. Electroanal. Chem. 2018, 819, 16–25.

[181]

Li, D.; Liu, Z.; Wang, J. R.; Liu, B. P.; Qin, Y. C.; Yang, W. R.; Liu, J. Q. Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting. Electrochim. Acta 2020, 340, 135957.

[182]

Zhang, J. J.; Su, H.; Wang, H. H.; Xue, Z. H.; Zhang, B.; Wei, X.; Li, X. H.; Hirano, S. I.; Chen, J. S. Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction. Nano Energy 2017, 39, 321–327.

[183]

Chen, H.; Gao, Y.; Ye, L.; Yao, Y. N.; Chen, X. Y.; Wei, Y.; Sun, L. C. A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chem. Commun. 2018, 54, 4979–4982.

[184]

Yang, W. Q.; Hua, Y. X.; Zhang, Q. B.; Lei, H.; Xu, C. Y. Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting. Electrochim. Acta 2018, 273, 71–79.

[185]
Zuo, Y.; Liu, Y. P.; Li, J. S.; Du, R. F.; Han, X.; Zhang, T.; Arbiol, J.; Divins, N. J.; Llorca, J.; Guijarro, N. et al. In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 2019, 31, 7732–7743.
[186]

Yuan, C. Z.; Sun, Z. T.; Jiang, Y. F.; Yang, Z. K.; Jiang, N.; Zhao, Z. W.; Qazi, U. Y.; Zhang, W. H.; Xu, A. W. One-step in situ growth of iron-nickel sulfide nanosheets on FeNi alloy foils: High-performance and self-supported electrodes for water oxidation. Small 2017, 13, 1604161.

[187]

Han, G. Q.; Li, X.; Liu, Y. R.; Dong, B.; Hu, W. H.; Shang, X.; Zhao, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. Controllable synthesis of three dimensional electrodeposited Co-P nanosphere arrays as efficient electrocatalysts for overall water splitting. RSC Adv. 2016, 6, 52761–52771.

[188]

Dey, A.; Chandrabose, G.; Damptey, L. A. O.; Erakulan, E. S.; Thapa, R.; Zhuk, S.; Dalapati, G. K.; Ramakrishna, S.; Braithwaite, N. S. J.; Shirzadi, A. et al. Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation. Appl. Surf. Sci. 2021, 541, 148571.

[189]

Khan, M. Y.; Asim, M.; Ehsan, M. A.; Zeama, M.; Al-Tayeb, M. A.; Alshitari, W.; Khan, A. Graphitic-polytriaminopyrimidine (g-PTAP): A novel bifunctional catalyst for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2022, 47, 21119–21129.

[190]

Deng, S. J.; Shen, S. H.; Zhong, Y.; Zhang, K. L.; Wu, J. B.; Wang, X. L.; Xia, X. H.; Tu, J. P. Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction. J. Energy Chem. 2017, 26, 1203–1209.

[191]

Ahamed, S. T.; Kulsi, C.; Kirti; Banerjee, D.; Srivastava, D. N.; Mondal, A. Synthesis of multifunctional CdSe and Pd quantum dot decorated CdSe thin films for photocatalytic, electrocatalytic and thermoelectric applications. Surf. Interfaces 2021, 25, 101149.

[192]

Kim, E. K.; Bui, H. T.; Shrestha, N. K.; Shin, C. Y.; Patil, S. A.; Khadtare, S.; Bathula, C.; Noh, Y. Y.; Han, S. H. An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature. Electrochim. Acta 2018, 260, 365–371.

[193]

Babar, N. U. A.; Joya, K. S. Spray-coated thin-film Ni-oxide nanoflakes as single electrocatalysts for oxygen evolution and hydrogen generation from water splitting. ACS Omega 2020, 5, 10641–10650.

[194]

Fominski, V.; Romanov, R.; Fominski, D.; Soloviev, A.; Rubinkovskaya, O.; Demin, M.; Maksimova, K.; Shvets, P.; Goikhman, A. Performance and mechanism of photoelectrocatalytic activity of MoSx/WO3 heterostructures obtained by reactive pulsed laser deposition for water splitting. Nanomaterials 2020, 10, 871.

[195]

Deng, S. J.; Shen, Y. B.; Xie, D.; Lu, Y. F.; Yu, X. L.; Yang, L.; Wang, X. L.; Xia, X. H.; Tu, J. P. Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. J. Energy Chem. 2019, 39, 61–67.

[196]

Huang, Z. N.; He, L. Q.; Zhang, W. B.; Huang, W. J.; Mo, Q. J.; Yang, L. C.; Fu, Q.; Gao, Q. S. Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. J. Colloid Interface Sci. 2022, 622, 728–737.

[197]

Chen, W. Z.; Zhang, M.; Liu, Y.; Yao, X. M.; Liu, P. Y.; Liu, Z. L.; He, J. L.; Wang, Y. Q. Super-hydrophilic MgO/NiCo2S4 heterostructure for high-efficient oxygen evolution reaction in neutral electrolytes. Appl. Catal. B:Environ. 2022, 312, 121432.

[198]

He, W. J.; Jia, D. B.; Cheng, J. N.; Wang, F. Q.; Zhang, L.; Li, Y.; Liu, C. C.; Hao, Q. Y.; Zhao, J. L. P-doped nickel sulfide nanosheet arrays for alkaline overall water splitting. Catal. Sci. Technol. 2020, 10, 7581–7590.

[199]

Zare, A.; Bayat, A.; Saievar-Iranizad, E.; Naffakh-Moosavy, H. One step preparation of Fe doped CoSe2 supported on nickel foam by facile electrodeposition method as a highly efficient oxygen evolution reaction electrocatalyst. J. Electroanal. Chem. 2020, 878, 114595.

[200]

Yu, X.; Xu, S. R.; Liu, X.; Cheng, X. H.; Du, Y. S.; Wu, Q. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2021, 878, 160388.

[201]

Wang, F.; Li, K.; Li, J. J.; Wolf, L. M.; Liu, K.; Zhang, H. J. A bifunctional electrode engineered by sulfur vacancies for efficient electrocatalysis. Nanoscale 2019, 11, 16658–16666.

[202]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[203]

Ganesan, P.; Staykov, A.; Shu, H.; Uejima, M.; Nakashima, N. Designing an FeIII-doped nickel sulfide/carbon nanotube hybrid catalyst for alkaline electrolyte membrane water electrolyzers and Zn-air battery performances. ACS Appl. Energy Mater. 2020, 3, 10961–10975.

[204]

Su, H.; Song, S. J.; Gao, Y. Q.; Li, N.; Fu, Y.; Ge, L.; Song, W. Y.; Liu, J.; Ma, T. Y. In situ electronic redistribution tuning of NiCo2S4 nanosheets for enhanced electrocatalysis. Adv. Funct. Mater. 2022, 32, 2109731.

[205]

Gao, Q.; Luo, W.; Ma, X. Y.; Ma, Z. M.; Li, S. J.; Gou, F. L.; Shen, W.; Jiang, Y. M.; He, R. X.; Li, M. Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: Active vacancy-metal pairs. Appl. Catal. B:Environ. 2022, 310, 121356.

[206]

Huang, S. S.; Jin, Z. Q.; Ning, P.; Gao, C. Y.; Wu, Y.; Liu, X.; Xin, P. J.; Chen, Z. X.; Jiang, Y.; Hu, Z. J. et al. Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chem. Eng. J. 2021, 420, 127630.

[207]

Li, J. W.; Lian, R. Q.; Wang, J. Y.; He, S.; Jiang, S. P.; Rui, Z. B. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim. Acta 2020, 331, 135395.

[208]

Zhu, K. Y.; Wu, T.; Li, M. R.; Lu, R. F.; Zhu, X. F.; Yang, W. S. Perovskites decorated with oxygen vacancies and Fe-Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 19836–19845.

[209]

Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

[210]

El Jaouhari, A.; Slassi, A.; Zhang, B. W.; Pershin, A.; Liu, W.; Cornil, D.; Liu, X. H.; Zhu, J. H. The role of selenium vacancies in the enhancement of electrocatalytic activity of CoNiSe2 for the oxygen evolution reaction. J. Power Sources 2021, 514, 230596.

[211]

Wang, P. C.; Lin, Y. Q.; Wan, L.; Wang, B. G. Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 6416–6424.

[212]

Zhou, M.; Wang, H. L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307.

[213]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[214]

Wang, X. Y.; Zhang, W. Z. Z.; Zhang, J. L.; Wu, Z. C. Fe-doped Ni3S2 nanowires with surface-restricted oxidation toward high-current-density overall water splitting. ChemElectroChem 2019, 6, 4550–4559.

[215]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[216]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[217]

Xu, S. R.; Du, Y. S.; Liu, X.; Yu, X.; Teng, C. L.; Cheng, X. H.; Chen, Y. F.; Wu, Q. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution. J. Alloys Compd. 2020, 826, 154210.

[218]

Liu, Y. H.; Ran, N.; Ge, R. Y.; Liu, J. J.; Li, W. X.; Chen, Y. Y.; Feng, L. Y.; Che, R. C. Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chem. Eng. J. 2021, 425, 131642.

[219]

Yin, M. M.; Miao, H.; Chen, B.; Hu, R. G.; Xia, L.; Zhang, C. F.; Wang, F.; Zhang, H. C.; Yuan, J. L. Self-supported metal sulfide electrode for flexible quasi-solid-state zinc-air batteries. J. Alloys Compd. 2021, 878, 160434.

[220]

Shit, S.; Bolar, S.; Murmu, N. C.; Kuila, T. Binder-free growth of nickel-doped iron sulfide on nickel foam via electrochemical deposition for electrocatalytic water splitting. ACS Sustainable Chem. Eng. 2019, 7, 18015–18026.

[221]

Kang, H. Y.; Li, H.; Zhao, X. Y.; Yang, L.; Xu, S. L. Anion doped bimetallic selenide as efficient electrocatalysts for oxygen evolution reaction. Ceram. Int. 2020, 46, 2792–2797.

[222]

Ding, Y. H.; Li, H. Y.; Hou, Y. Phosphorus-doped nickel sulfides/nickel foam as electrode materials for electrocatalytic water splitting. Int. J. Hydrogen Energy 2018, 43, 19002–19009.

[223]

Hao, Q. Y.; Li, S. Y.; Liu, H.; Mao, J.; Li, Y.; Liu, C. C.; Zhang, J.; Tang, C. C. Dual tuning of nickel sulfide nanoflake array electrocatalyst through nitrogen doping and carbon coating for efficient and stable water splitting. Catal. Sci. Technol. 2019, 9, 3099–3108.

[224]

Ashok, A.; Kumar, A.; Ponraj, J.; Mansour, S. A. Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting. Electrochim. Acta 2021, 368, 137642.

[225]

Jiang, H.; Yuan, H. T.; Zhang, L. G.; Dong, W. J.; Chang, Y. Q.; Jia, X. L.; Wang, G. A self-standing 3D heterostructured N-doped Co4S3/Ni3S2/NF for high-performance overall water splitting. J. Electrochem. Soc. 2021, 168, 076504.

[226]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[227]

Shi, Z. X.; Zhao, J. W.; Li, C. F.; Xu, H.; Li, G. R. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Appl. Catal. B:Environ. 2021, 298, 120558.

[228]

Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773–3782.

[229]

Sun, Z. M.; He, J. L.; Yuan, M. W.; Lin, L.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Li, H. F.; Sun, G. B.; Yang, X. J. et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 2019, 65, 103996.

[230]

Tang, B. S.; Yu, Z. G.; Seng, H. L.; Zhang, N. D.; Liu, X. X.; Zhang, Y. W.; Yang, W. F.; Gong, H. Simultaneous edge and electronic control of MoS2 nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale 2018, 10, 20113–20119.

[231]

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[232]

Zhang, N.; Gan, S. Y.; Wu, T. S.; Ma, W. G.; Han, D. X.; Niu, L. Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: An excellent hydrogen evolution 3D cathode. ACS Appl. Mater. Interfaces 2015, 7, 12193–12202.

[233]

Sadighi, Z.; Liu, J. P.; Zhao, L.; Ciucci, F.; Kim, J. K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. Nanoscale 2018, 10, 22549–22559.

[234]

Lu, W. Q.; Song, Y.; Dou, M. L.; Ji, J.; Wang, F. Self-supported Ni3S2@MoS2 core/shell nanorod arrays via decoration with CoS as a highly active and efficient electrocatalyst for hydrogen evolution and oxygen evolution reactions. Int. J. Hydrogen Energy 2018, 43, 8794–8804.

[235]

Zeng, J. S.; Zhang, L.; Zhou, Q.; Liao, L. L.; Qi, Y.; Zhou, H. Q.; Li, D. Y.; Cai, F. M.; Wang, H.; Tang, D. S. et al. Boosting alkaline hydrogen and oxygen evolution kinetic process of tungsten disulfide-based heterostructures by multi-site engineering. Small 2022, 18, e2104624.

[236]

Wang, W. Y.; Ren, X.; Hao, S.; Liu, Z. A.; Xie, F. Y.; Yao, Y. D.; Asiri, A. M.; Chen, L.; Sun, X. P. Self-templating construction of hollow amorphous CoMoS4 nanotube array towards efficient hydrogen evolution electrocatalysis at neutral pH. Chem. -Eur. J. 2017, 23, 12718–12723.

[237]

Ansari, M. S.; Kim, H. Enhanced electrocatalytic oxygen evolution reaction kinetics using dual-phase engineering of self-supported hierarchical NiCoV(OH)x nanowire arrays. Fuel 2021, 304, 121309.

[238]

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

[239]

Feng, W. S.; Bu, M. M.; Kan, S. T.; Gao, X. H.; Guo, A. M.; Liu, H. T.; Deng, L. W.; Chen, W. Interfacial hetero-phase construction in nickel/molybdenum selenide hybrids to promote the water splitting performance. Appl. Mater. Today 2021, 25, 101175.

[240]

Guan, X.; Sun, X.; Feng, H.; Zhang, J.; Wen, H.; Tian, W. L.; Zheng, D. C.; Yao, Y. D. Rational interface engineering of Cu2S-CoOx/CF enhances oxygen evolution reaction activity. Chem. Commun. 2020, 56, 13571–13574.

[241]

Xu, Y.; Chai, X. J.; Ren, T. L.; Yu, H. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Synergism of interface and electronic effects: Bifunctional N-doped Ni3S2/N-doped MoS2 hetero-nanowires for efficient electrocatalytic overall water splitting. Chem. -Eur. J. 2019, 25, 16074–16080.

[242]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Boosting electrochemical water oxidation: The merits of heterostructured electrocatalysts. J. Mater. Chem. A 2020, 8, 6393–6405.

[243]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[244]

Du, C.; Men, Y.; Hei, X.; Yu, J. H.; Cheng, G. Z.; Luo, W. Mo-doped Ni3S2 nanowires as high-performance electrocatalysts for overall water splitting. ChemElectroChem 2018, 5, 2564–2570.

[245]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

[246]

Xu, J. C.; Rong, J.; Zheng, Y. H.; Zhu, Y.; Mao, K. L.; Jing, Z. F.; Zhang, T.; Yang, D. Y.; Qiu, F. X. Construction of sheet-on-sheet hierarchical MoS2/NiS2 heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2021, 385, 138438.

[247]

Li, W. Q.; Wu, L.; Wu, X. C.; Shi, C.; Li, Y. L.; Zhang, L.; Mi, H. W.; Zhang, Q. L.; He, C. X.; Ren, X. Z. Regulation and mechanism study of the CoS2/Cu2S-NF heterojunction as highly-efficient bifunctional electrocatalyst for oxygen reactions. Appl. Catal. B: Environ. 2022, 303, 120849.

[248]

Yang, Y. Q.; Mao, H.; Sun, K. S.; Ning, R.; Zheng, X. H.; Sui, J.; Cai, W. Facile synthesis of FeOOH-Ni3S2 nanosheet arrays on nickel foam via chemical immersion toward electrocatalytic water splitting. ChemistrySelect 2022, 7, e202103393.

[249]

Wang, J. J.; Huang, J.; Chen, G. L.; Chen, W.; Li, T. T.; Meng, A. K.; Ostrikov, K. In-situ engineered heterostructured nickel tellur-selenide nanosheets for robust overall water splitting. Chem. Eng. J. 2022, 446, 137297.

[250]

Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk–shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.

[251]

Liao, C. W.; Chen, S. Y.; Hsu, L. C.; Lin, C. W.; Chen, J. L.; Kuo, C. H.; Chang, Y. H. Insights into electrocatalytic oxygen evolution over hierarchical FeCo2S4 nanospheres. ACS Sustainable Chem. Eng. 2021, 10, 431–440.

[252]

Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A. et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 2247–2253.

[253]

Cao, J. H.; Lei, C. J.; Yang, B.; Li, Z. J.; Lei, L. C.; Hou, Y.; Feng, X. L. Zeolitic imidazolate framework-derived core–shell-structured CoS2/CoS2-N-C supported on electrochemically exfoliated graphene foil for efficient oxygen evolution. Batteries Supercaps 2019, 2, 348–354.

[254]

Tan, Y. Y.; Zhang, Z. Y.; Lei, Z.; Wu, W.; Zhu, W. B.; Cheng, N. C.; Mu, S. C. Thiourea-zeolitic imidazolate framework-67 assembly derived Co-CoO nanoparticles encapsulated in N, S codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn-air batteries. J. Power Sources 2020, 473, 228570.

[255]

Li, J.; Wan, T. T.; Li, J. D.; Zhang, Z. S.; Wang, Y. J.; Liu, G. H. Three-dimensionally ordered mesoporous trimetal sulfide as efficient electrocatalyst for rechargeable zinc-air batteries. Appl. Surf. Sci. 2022, 575, 151728.

[256]

Zhang, R. X.; Hu, Z. C.; Ning, T. Y.; Chen, N.; Shang, Z. B.; He, M. M.; Wu, J. B.; Shi, H. Heterophase stimulated active species evolution in iron/cobalt sulfide nanocomposites for oxygen evolution. Colloids Surf. A:Physicochem. Eng. Aspects 2022, 648, 129181.

[257]

Zhang, J. C.; Zhang, D. J.; Zhang, R. C.; Zhang, N. N.; Cui, C. C.; Zhang, J. R.; Jiang, B.; Yuan, B. Q.; Wang, T. Y.; Xie, H. et al. Facile synthesis of mesoporous and thin-walled Ni-Co sulfide nanotubes as efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 495–502.

[258]

Li, Y. R.; Guo, Q. F.; Jiang, Y. M.; Shen, W.; Li, M.; He, R. X. A novel ball-in-ball hollow oxygen-incorporating cobalt sulfide spheres as high-efficient electrocatalyst for oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 755–760.

[259]

Xu, Y. J.; Sumboja, A.; Groves, A.; Ashton, T.; Zong, Y.; Darr, J. A. Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries. RSC Adv. 2020, 10, 41871–41882.

[260]

Hong, Y. R.; Mhin, S.; Kim, K. M.; Han, W. S.; Choi, H.; Ali, G.; Chung, K. Y.; Lee, H. J.; Moon, S. I.; Dutta, S. et al. Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: Partial amorphization and phase control. J. Mater. Chem. A 2019, 7, 3592–3602.

[261]

Zhang, S. S.; Sun, Y. Y.; Liao, F.; Shen, Y. W.; Shi, H. X.; Shao, M. W. Co9S8-CuS-FeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis. Electrochim. Acta 2018, 283, 1695–1701.

[262]

Nai, J. W.; Lu, Y.; Yu, X. Y. Formation of Ti-Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 21891–21895.

[263]

Zhou, Y. X.; Luo, M.; Zhang, Z. C.; Li, W. R.; Shen, X. S.; Xia, W. W.; Zhou, M.; Zeng, X. H. Iron doped cobalt sulfide derived boosted electrocatalyst for water oxidation. Appl. Surf. Sci. 2018, 448, 9–15.

[264]

Adamson, W.; Jia, C.; Li, Y. B.; Zhao, C. Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation. Electrochim. Acta 2020, 355, 136802.

[265]

Li, Z. J.; Wang, X. M.; Wang, X. H.; Lin, Y. S.; Meng, A. L.; Yang, L. N.; Li, Q. D. Mn-Cd-S@amorphous-Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and electrocatalytic OER. Appl. Surf. Sci. 2019, 491, 799–806.

[266]

Zhang, R. X.; Hu, Z. C.; Cheng, S. Q.; Ke, W. T.; Ning, T. Y.; Wu, J. B.; Fu, X. Q.; Zhu, G. X. Molecular precursor route to CuCo2S4 nanosheets: A high-performance pre-catalyst for oxygen evolution and its application in Zn-air batteries. Inorg. Chem. 2021, 60, 6721–6730.

[267]

Wang, M.; Dong, C. L.; Huang, Y. C.; Shen, S. H. Operando spectral and electrochemical investigation into the heterophase stimulated active species transformation in transition-metal sulfides for efficient electrocatalytic oxygen evolution. ACS Catal. 2020, 10, 1855–1864.

[268]

Ding, J. T.; Ji, S.; Wang, H.; Gai, H. J.; Liu, F. S.; Linkov, V.; Wang, R. F. Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. Int. J. Hydrogen Energy 2019, 44, 2832–2840.

[269]

Guo, Y. N.; Zhou, X.; Tang, J.; Tanaka, S.; Kaneti, Y. V.; Na, J.; Jiang, B.; Yamauchi, Y.; Bando, Y.; Sugahara, Y. Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy 2020, 75, 104913.

[270]

Tang, Y. J.; Zou, Y.; Zhu, D. D. Efficient water oxidation using an Fe-doped nickel telluride-nickel phosphide electrocatalyst by partial phosphating. J. Mater. Chem. A 2022, 10, 12438–12446.

[271]

Rasmussen, F. A.; Thygesen, K. S. Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 2015, 119, 13169–13183.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2023
Revised: 13 March 2023
Accepted: 14 March 2023
Published: 03 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), the Natural Science Foundation of Jilin Province (No. 20220101051JC), and the Education Department of Jilin Province (No. JJKH20220967KJ).

Return