Journal Home > Volume 16 , Issue 7

The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy. In this work, a PdCu nanoalloy was successfully anchored on TiO2 encapsulated with carbon to construct a catalyst. Outstanding kinetics of the hydrolysis of ammonia borane (turnover frequency of 279 mol H2∙min−1∙molPd−1) ranking the third place among Pd-based catalysts was achieved in the absence of alkali. Both experimental research and theoretical calculations reveal a lower activation energy of the B–H bond on the PdCu nanoalloy catalyst than that on pristine Pd and a lower activation energy of the O–H bond than that on pristine Cu. The redistribution of d electron and the shift of the d-band center play a critical role in increasing the electron density of Pd and improving the catalytic performances of Pd0.1Cu0.9/TiO2-porous carbon (Pd0.1Cu0.9/T-PC). This work provides novel insights into highly dual-active alloys and sheds light on the mechanism of dual-active sites in promoting borohydride hydrolysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coupling atom ensemble and electron transfer in PdCu for superior catalytic kinetics in hydrogen generation

Show Author's information Xinru Zhao1Yanyan Liu1,2Huiyu Yuan3Hao Wen4Huanhuan Zhang1,4Saima Ashraf4Shuyan Guan1,4Tao Liu5Sehrish Mehdi4Ruofan Shen4Xianji Guo4Yanping Fan1Baozhong Liu1,6( )Baojun Li1,4,7( )
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
College of Science, Henan Agriculture University, Zhengzhou 450002, China
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology, Beijing 100190, China
State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy. In this work, a PdCu nanoalloy was successfully anchored on TiO2 encapsulated with carbon to construct a catalyst. Outstanding kinetics of the hydrolysis of ammonia borane (turnover frequency of 279 mol H2∙min−1∙molPd−1) ranking the third place among Pd-based catalysts was achieved in the absence of alkali. Both experimental research and theoretical calculations reveal a lower activation energy of the B–H bond on the PdCu nanoalloy catalyst than that on pristine Pd and a lower activation energy of the O–H bond than that on pristine Cu. The redistribution of d electron and the shift of the d-band center play a critical role in increasing the electron density of Pd and improving the catalytic performances of Pd0.1Cu0.9/TiO2-porous carbon (Pd0.1Cu0.9/T-PC). This work provides novel insights into highly dual-active alloys and sheds light on the mechanism of dual-active sites in promoting borohydride hydrolysis.

Keywords: dual-active sites, PdCu nanoalloy, d-band holes, borohydride hydrolysis, ensemble effect

References(65)

[1]

Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412–4422.

[2]

Yang, Z. X.; Li, X. G.; Yao, Q. L.; Lu, Z. H.; Zhang, N.; Xia, J.; Yang, K.; Wang, Y. Q.; Zhang, K.; Liu, H. Z. et al. 2022 roadmap on hydrogen energy from production to utilizations. Rare Met. 2022, 41, 3251–3267.

[3]

Shen, R. F.; Liu, Y. Y.; Zhang, H. H.; Liu, S. L.; Yuan, H. J.; Wen, H.; Wu, X. L.; Mehdi, S.; Liu, T.; Jiang, J. C. et al. Coupling oxygen vacancy and hetero-phase junction for boosting catalytic activity of Pd toward hydrogen generation. Appl. Catal. B: Environ. 2023, 328, 122484.

[4]

Yao, Q. L.; Ding, Y. Y.; Lu, Z. H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg. Chem. Front. 2020, 7, 3837–3874.

[5]
Wan, C.; Liu, X. L.; Wang, J. P.; Chen, F. Q.; Cheng, D. G. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res., in press, https://doi.org/10.1007/s12274-023-5388-5.
[6]

Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

[7]

Liao, G. F.; Fang, J. S.; Li, Q.; Li, S. H.; Xu, Z. S.; Fang, B. Z. Ag-based nanocomposites: Synthesis and applications in catalysis. Nanoscale 2019, 11, 7062–7096.

[8]

Liao, G. F.; Zhao, W. Z.; Li, Q.; Pang, Q. H.; Xu, Z. S. Novel poly(acrylic acid)-modified tourmaline/silver composites for adsorption removal of Cu(II) ions and catalytic reduction of methylene blue in water. Chem. Lett. 2017, 46, 1631–1634.

[9]

Xie, H.; Chen, S. Q.; Liang, J. S.; Wang, T. Y.; Hou, Z. F.; Wang, H. L.; Chai, G. L.; Li, Q. Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2100883.

[10]

Wang, C. Y.; Li, L. L.; Yu, X. F.; Lu, Z. M.; Zhang, X. H.; Wang, X. X.; Yang, X. J.; Zhao, J. L. Regulation of d-band electrons to enhance the activity of Co-based non-noble bimetal catalysts for hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 2020, 8, 8256–8266.

[11]

Huang, X. Y.; Liu, Y. Y.; Wen, H.; Shen, R. F.; Mehdi, S.; Wu, X. L.; Liang, E. J.; Guo, X. J.; Li, B. J. Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Appl. Catal. B: Environ. 2021, 287, 119960.

[12]

Guo, Y.; Wang, M. L.; Zhu, Q. J.; Xiao, D. Q.; Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 2022, 5, 766–776.

[13]

Lin, Z. P.; Xiao, B. B.; Huang, M.; Yan, L. H.; Wang, Z. P.; Huang, Y. C.; Shen, S. J.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200855.

[14]

Huang, G.; Li, Y. Y.; Chen, R.; Xiao, Z. H.; Du, S. Q.; Huang, Y. C.; Xie, C.; Dong, C. L.; Yi, H. B.; Wang, S. Y. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chin. J. Catal. 2022, 43, 1101–1110.

[15]

Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.

[16]

Wang, J. S.; Yu, Y. Y.; Xu, W. K.; Yu, H.; Zhang, W. W.; Huang, H. L.; Zhang, G. R.; Mei, D. H. Covalent triazine framework encapsulated Pd nanoclusters for efficient hydrogen production via ammonia borane hydrolysis. J. Catal. 2022, 411, 72–83.

[17]

Shen, R. F.; Liu, Y. Y.; Wen, H.; Wu, X. L.; Peng, Z. K.; Mehdi, S.; Liu, T.; Zhang, H. H.; Guan, S. Y.; Liang, E. J. et al. Engineering vacancy-atom ensembles to boost catalytic activity toward hydrogen evolution. Energy Environ. Mater. 2023, 6, e12292.

[18]

Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

[19]

Jia, X. X.; Zhao, J. W.; Lv, Y. J.; Fu, X. L.; Jian, Y. J.; Zhang, W. Q.; Wang, Y. Y.; Sun, H. M.; Wang, X. X.; Long, J. L. et al. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic Suzuki coupling. Appl. Catal. B: Environ. 2022, 300, 120756.

[20]

Geng, J. R.; Zhu, Z.; Ni, Y. X.; Li, H. X.; Cheng, F. Y.; Li, F. J.; Chen, J. Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Res. 2022, 15, 280–284.

[21]

Li, X.; Wang, X. X.; Liu, M. C.; Liu, H. Y.; Chen, Q.; Yin, Y. D.; Jin, M. S. Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Res. 2018, 11, 780–790.

[22]

Liao, G. F.; Gong, Y.; Zhong, L.; Fang, J. S.; Zhang, L.; Xu, Z. S.; Gao, H. Y.; Fang, B. Z. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 2019, 12, 2407–2436.

[23]

Liu, X.; Zhang, S. Y.; Liang, J. S.; Li, S. Z.; Shi, H.; Liu, J. J.; Wang, T. Y.; Han, J. T.; Li, Q. Protrusion-rich Cu@NiRu core@shell nanotubes for efficient alkaline hydrogen evolution electrocatalysis. Small 2022, 18, 2202496.

[24]

An, Z.; Liu, J. Y.; Cao, M.; Zhang, J.; Zhu, Y. R.; Song, H. Y.; Xiang, X.; He, J. Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal–support interactions. Nano Res. 2023, 16, 3709–3718.

[25]

Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

[26]

Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349.

[27]

Chen, J. F.; Wang, X. Y.; Zhang, L. L.; Rui, Z. B. Strong metal–support interaction assisted redispersion strategy for obtaining ultrafine and stable IrO2/Ir active sites with exceptional methane oxidation activity. Appl. Catal. B: Environ. 2021, 297, 120410.

[28]

Hong, J. P.; Wang, B.; Xiao, G. Q.; Wang, N.; Zhang, Y. H.; Khodakov, A. Y.; Li, J. L. Tuning the metal–support interaction and enhancing the stability of titania-supported cobalt Fischer–Tropsch catalysts via carbon nitride coating. ACS Catal. 2020, 10, 5554–5566.

[29]

Chu, M. Y.; Huang, J. L.; Gong, J.; Qu, Y.; Chen, G. L.; Yang, H.; Wang, X. C.; Zhong, Q. X.; Deng, C. W.; Cao, M. H. et al. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 2022, 15, 3920–3926.

[30]

Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M.; Fang, Z. B.; Wang, C. Z.; Wei, Y. J.; Chen, G.; Zhang, D.; Sun, Z. H. et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018, 49, 137–146.

[31]

Liao, G. F.; Li, Q.; Zhao, W. Z.; Pang, Q. H.; Gao, H. Y.; Xu, Z. S. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A: Gen. 2018, 549, 102–111.

[32]

Qiu, T. J.; Cheng, J. Q.; Liang, Z. B.; Tabassum, H.; Shi, J. M.; Tang, Y. Q.; Guo, W. H.; Zheng, L. R.; Gao, S.; Xu, S. Z. et al. Unveiling the nanoalloying modulation on hydrogen evolution activity of ruthenium-based electrocatalysts encapsulated by B/N Co-doped graphitic nanotubes. Appl. Catal. B: Environ. 2022, 316, 121626.

[33]

Liao, G. F.; Chen, J.; Zeng, W. G.; Yu, C. H.; Yi, C. F.; Xu, Z. S. Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J. Phys. Chem. C 2016, 120, 25935–25944.

[34]

Zhou, B. J.; Liu, Y. Y.; Wu, X. L.; Liu, H.; Liu, T.; Wang, Y.; Mehdi, S.; Jiang, J. C.; Li, B. J. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 2022, 15, 1415–1423.

[35]

Feng, Y. N.; Zhou, X. P.; Yang, J. H.; Gao, X. Y.; Yin, L. X.; Zhao, Y. F.; Zhang, B. Encapsulation of ammonia borane in Pd/halloysite nanotubes for efficient thermal dehydrogenation. ACS Sustainable Chem. Eng. 2020, 8, 2122–2129.

[36]

Cai, J. M.; Wei, Y. Y.; Cao, A.; Huang, J. J.; Jiang, Z.; Lu, S. Y.; Zang, S. Q. Electrocatalytic nitrate-to-ammonia conversion with ~ 100% Faradaic efficiency via single-atom alloying. Appl. Catal. B: Environ. 2022, 316, 121683.

[37]

Li, P.; Chen, R.; Huang, Y. Q.; Li, W. Q.; Zhao, S. E.; Tian, S. H. Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane. Appl. Catal. B: Environ. 2022, 300, 120725.

[38]

Liu, D. X.; Zhou, Y. T.; Zhu, Y. F.; Chen, Z. Y.; Yan, J. M.; Jiang, Q. Tri-metallic AuPdIr nanoalloy towards efficient hydrogen generation from formic acid. Appl. Catal. B: Environ. 2022, 309, 121228.

[39]

Zhang, L.; Zhou, L. Q.; Yang, K. Z.; Gao, D. D.; Huang, C.; Chen, Y. F.; Zhang, F.; Xiong, X.; Li, L.; Xia, Q. H. Pd-Ni nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane. J. Alloys Compd. 2016, 677, 87–95.

[40]

Huang, H. W.; Jung, H.; Park, C. Y.; Kim, S.; Lee, A.; Jun, H.; Choi, J.; Han, J. W.; Lee, J. Surface conversion derived core–shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Appl. Catal. B: Environ. 2022, 315, 121554.

[41]

He, C. Y.; Tao, J. Z.; Shen, P. K. Solid synthesis of ultrathin palladium and its alloys’ nanosheets on RGO with high catalytic activity for oxygen reduction reaction. ACS Catal. 2018, 8, 910–919.

[42]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[43]

Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147.

[44]

Mboyi, C. D.; Poinsot, D.; Roger, J.; Fajerwerg, K.; Kahn, M. L.; Hierso, J. C. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation. Small 2021, 17, 2102759.

[45]

Tunç, N.; Rakap, M. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renew. Energy 2020, 155, 1222–1230.

[46]

Jia, H.; Chen, X.; Liu, C. Y.; Liu, X. J.; Zheng, X. C.; Guan, X. X.; Liu, P. Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: The novel organic–inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2018, 43, 12081–12090.

[47]

Jia, H.; Chen, X.; Song, X. R.; Zheng, X. C.; Guan, X. X.; Liu, P. Graphitic carbon nitride-chitosan composites-anchored palladium nanoparticles as high-performance catalyst for ammonia borane hydrolysis. Int. J. Energy Res. 2019, 43, 535–543.

[48]

Akbayrak, S.; Çakmak, G.; Öztürk, T.; Özkar, S. Rhodium(0), ruthenium(0), and palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2021, 46, 13548–13560.

[49]

Liu, S.; Li, Y. T.; Zheng, X. C.; Guan, X. X.; Zhang, X. L.; Liu, P. Pd nanoparticles anchoring to core–shell Fe3O4@SiO2-porous carbon catalysts for ammonia borane hydrolysis. Int. J. Hydrogen Energy 2020, 45, 1671–1680.

[50]

Eghbali, P.; Gürbüz, M. U.; Ertürk, A. S.; Metin, Ö. In situ synthesis of dendrimer-encapsulated palladium(0) nanoparticles as catalysts for hydrogen production from the methanolysis of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 26274–26285.

[51]

Qu, B.; Tao, Y.; Yang, L.; Liu, Y. H. One-pot Co-reduction synthesis of orange-like Pd@Co@P nanoparticles supported on RGO for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2021, 46, 31324–31333.

[52]

Zhao, X.; Fu, Y. F.; Yao, C.; Xu, S. R.; Shen, Y.; Ding, Q.; Liu, W. J.; Zhang, H. B.; Zhou, X. H. From boron organic polymers to in situ ultrafine nano Pd and Pt: Green synthesis and application for high efficiency hydrogen evolution. ChemCatChem 2019, 11, 2362–2369.

[53]

Yao, F.; Guan, S. Y.; Bian, L. Y.; Fan, Y. P.; Liu, X. Y.; Zhang, H. H.; Li, B. J.; Liu, B. Z. Ensemble-exciting effect in Pd/alk-Ti3C2 on the activity for efficient hydrogen production. ACS Sustainable Chem. Eng. 2021, 9, 12332–12340.

[54]

Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A. H.; Yao, Q. L.; Chen, X. S. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3. ChemCatChem 2018, 10, 1620–1626.

[55]

Shang, N. Z.; Zhou, X.; Feng, C.; Gao, S. T.; Wu, Q. H.; Wang, C. Synergetic catalysis of Ni-Pd nanoparticles supported on biomass-derived carbon spheres for hydrogen production from ammonia borane at room temperature. Int. J. Hydrogen Energy 2017, 42, 5733–5740.

[56]

Akbayrak, S.; Kaya, M.; Volkan, M.; Özkar, S. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable, and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B: Environ. 2014, 147, 387–393.

[57]

Kahri, H.; Sevim, M.; Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 2017, 10, 1627–1640.

[58]

Zhou, Y. H.; Wang, S. Q.; Zhang, Z. Y.; Williams, N.; Cheng, Y.; Gu, J. Hollow nickel-cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane. ChemCatChem 2018, 10, 3206–3213.

[59]

Liu, Y. H.; Ding, J.; Li, F. H.; Su, X. Z.; Zhang, Q. T.; Guan, G. J.; Hu, F. X.; Zhang, J. C.; Wang, Q. L.; Jiang, Y. C. et al. Modulating hydrogen adsorption via charge transfer at the semiconductor–metal heterointerface for highly efficient hydrogen evolution catalysis. Adv. Mater. 2023, 35, 2207114.

[60]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

[61]

Zhang, H. H.; Liu, Y. Y.; Wei, H. J.; Wang, C. M.; Liu, T.; Wu, X. L.; Ashraf, S.; Mehdi, S.; Guan, S. Y.; Fan, Y. P. et al. Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Appl. Catal. B: Environ. 2022, 314, 121495.

[62]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[63]

Shen, R. F.; Liu, Y. Y.; Wen, H.; Liu, T.; Peng, Z. K.; Wu, X. L.; Ge, X. H.; Mehdi, S.; Cao, H. Q.; Liang, E. J. et al. Engineering VO-Ti ensemble to boost the activity of Ru towards water dissociation for catalytic hydrogen generation. Appl. Catal. B: Environ. 2022, 306, 121100.

[64]

Xu, J. C.; Gao, D. D.; Yu, H. G.; Wang, P.; Zhu, B. C.; Wang, L. X.; Fan, J. J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. Chin. J. Catal. 2022, 43, 215–225.

[65]

Liao, J. Y.; Shao, Y. X.; Feng, Y. F.; Zhang, J.; Song, C. X.; Zeng, W.; Tang, J. T.; Dong, H. F.; Liu, Q. B.; Li, H. Interfacial charge transfer induced dual-active-sites of heterostructured Cu0.8Ni0.2WO4 nanoparticles in ammonia borane methanolysis for fast hydrogen production. Appl. Catal. B: Environ. 2023, 320, 121973.

File
12274_2023_5667_MOESM1_ESM.pdf (878.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2023
Revised: 09 March 2023
Accepted: 12 March 2023
Published: 24 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22279118, 22279117, 52071135, 51871090, and U1804135) and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF220201).

Return