Journal Home > Volume 16 , Issue 10

Platinum (Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis (PEMWE), due to their excellent catalytic activity for acidic hydrogen evolution reaction (HER), but are greatly limited by their low reserves and high cost. Here, we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon (Pt-MoCx@C) for high-rate and stable HER in PEMWE. Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate, the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1, 5.6 times higher than that of commercial 20 wt.% Pt/C catalyst. Moreover, the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst. Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx, the critical role of MoCx substrate in the stabilization of surface Pt atoms, as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity. The optimized Pt-MoCx@C catalyst demonstrates > 2000 h stability under a water-splitting current of 1000 mA·cm−2 when applied to the cathode of a PEM water electrolyzer, suggesting the potential for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis

Show Author's information Lulu Chen1Yichao Huang1( )Yanping Ding1Ping Yu2Fang Huang2Wenbo Zhou1Limin Wang1Yangyang Jiang1Haitao Li1Hanqing Cai1Lin Wang1Hang Wang1Meihong Liao3( )Lianming Zhao1( )Zhuangjun Fan1( )
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Shandong Saikesaisi Hydrogen Energy Co., Ltd, Jinan 250013, China
School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China

Abstract

Platinum (Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis (PEMWE), due to their excellent catalytic activity for acidic hydrogen evolution reaction (HER), but are greatly limited by their low reserves and high cost. Here, we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon (Pt-MoCx@C) for high-rate and stable HER in PEMWE. Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate, the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1, 5.6 times higher than that of commercial 20 wt.% Pt/C catalyst. Moreover, the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst. Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx, the critical role of MoCx substrate in the stabilization of surface Pt atoms, as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity. The optimized Pt-MoCx@C catalyst demonstrates > 2000 h stability under a water-splitting current of 1000 mA·cm−2 when applied to the cathode of a PEM water electrolyzer, suggesting the potential for practical applications.

Keywords: platinum, electrocatalysts, hydrogen evolution reaction, molybdenum carbides, proton exchange membrane (PEM) water electrolysis

References(74)

[1]

Xia, Z. H. Hydrogen evolution: Guiding principles. Nat. Energy 2016, 1, 16155.

[2]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[3]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[4]

Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454.

[5]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Inter. J. Hydrogen Energy 2013, 38, 4901–4934.

[6]

Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100–108.

[7]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[8]

Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. Is there anything better than Pt for HER. ACS Energy Lett. 2021, 6, 1175–1180.

[9]

Shao, Q.; Wang, P. T.; Zhu, T.; Huang, X. Q. Low dimensional platinum-based bimetallic nanostructures for advanced catalysis. Acc. Chem. Res. 2019, 52, 3384–3396.

[10]

Kobayashi, D.; Kobayashi, H.; Wu, D. S.; Okazoe, S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y. et al. Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254.

[11]

Flores Espinosa, M. M.; Cheng, T.; Xu, M. J.; Abatemarco, L.; Choi, C.; Pan, X. Q.; Goddard III, W. A.; Zhao, Z. P.; Huang, Y. Compressed intermetallic PdCu for enhanced electrocatalysis. ACS Energy Lett. 2020, 5, 3672–3680.

[12]

Liu, L.; Wang, Y.; Zhao, Y. Z.; Wang, Y.; Zhang, Z. L.; Wu, T.; Qin, W. J.; Liu, S. J.; Jia, B. R.; Wu, H. Y. et al. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt. Adv. Funct. Mater. 2022, 32, 2112207.

[13]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

[14]

Xing, Z. C.; Wang, D. W.; Meng, T.; Yang, X. R. Superb hydrogen evolution by a Pt nanoparticle-decorated Ni3S2 microrod array. ACS Appl. Mater. Interfaces 2020, 12, 39163–39169.

[15]

Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem., Int. Ed. 2021, 60, 25766–25770.

[16]

Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

[17]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[18]

Cheng, Q. Q.; Hu, C. G.; Wang, G. L.; Zou, Z. Q.; Yang, H.; Dai, L. M. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 5594–5601.

[19]

Wu, Y. C.; Wei, W.; Yu, R. H.; Xia, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

[20]

Lai, Y. Q.; Zhang, Z. T.; Zhang, Z. Y.; Tan, Y. Y.; Yu, L. Y.; Wu, W.; Wang, Z. C.; Jiang, T.; Gao, S. H.; Cheng, N. C. Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 2022, 435, 135102.

[21]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[22]

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

[23]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[24]

Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-Based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

[25]

Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S., Li, Y. Enhanced photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chin. J. Struct. Chem. 2022, 41, 2206006–2206014.

[26]

Zeng, Z. X.; Su, Y.; Quan, X.; Choi, W.; Zhang, G. H.; Liu, N.; Kim, B.; Chen, S.; Yu, H. T.; Zhang, S. S. Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 69, 104409.

[27]

Zhu, J. T.; Cai, L. J.; Yin, X. M.; Wang, Z.; Zhang, L. F.; Ma, H. B.; Ke, Y. X.; Du, Y. H.; Xi, S. B.; Wee, A. T. S. et al. Enhanced electrocatalytic hydrogen evolution activity in single-atom Pt-decorated VS2 nanosheets. ACS Nano 2020, 14, 5600–5608.

[28]

Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H.; Yang, L. et al. Confining zero-valent platinum single atoms in α-MoC1-x for pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2108464.

[29]

Niu, S. S.; Yang, J.; Qi, H. F.; Su, Y.; Wang, Z. Y.; Qiu, J. S.; Wang, A. Q.; Zhang, T. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction. J. Energy Chem. 2021, 57, 371–377.

[30]

Park, S.; Lee, Y. L.; Yoon, Y.; Park, S. Y.; Yim, S.; Song, W.; Myung, S.; Lee, K. S.; Chang, H.; Lee, S. S. et al. Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER. Appl. Catal. B: Environ. 2022, 304, 120989.

[31]

Mosallanezhad, A.; Wei, C.; Ahmadian Koudakan, P.; Fang, Y. Y.; Niu, S. W.; Bian, Z. N.; Liu, B.; Huang, T.; Pan, H. G.; Wang, G. M. Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl. Catal. B: Environ. 2022, 315, 121534.

[32]

Zhang, J. J.; Wang, E. Q.; Cui, S. Q.; Yang, S. B.; Zou, X. L.; Gong, Y. J. Single-atom Pt anchored on oxygen vacancy of monolayer Ti3C2Tx for superior hydrogen evolution. Nano Lett. 2022, 22, 1398–1405.

[33]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[34]

Yu, F. Y.; Lang, Z. L.; Yin, L. Y.; Feng, K.; Xia, Y. J.; Tan, H. Q.; Zhu, H. T.; Zhong, J.; Kang, Z. H.; Li, Y. G. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 2020, 11, 490.

[35]

Yu, F. Y.; Lang, Z. L.; Zhou, Y. J.; Feng, K.; Tan, H. Q.; Zhong, J.; Lee, S. T.; Kang, Z. H.; Li, Y. G. Revealing hydrogen evolution performance of single-atom platinum electrocatalyst with polyoxometalate molecular models. ACS Energy Lett. 2021, 6, 4055–4062.

[36]

Hu, L. Q.; Lin, H. Q. Bimodal free volumes uplift gas separation. Nat. Mater. 2023, 22, 10–11.

[37]

Wang, W. W.; Geng, W.; Zhang, L.; Zhao, Z. Y.; Zhang, Z.; Ma, T.; Cheng, C.; Liu, X. K.; Zhang, Y. N.; Li, S. Molybdenum oxycarbide supported Rh-clusters with modulated interstitial C–O microenvironments for promoting hydrogen evolution. Small 2023, 19, 2206808.

[38]

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

[39]

Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 1, 773–782.

[40]

Wang, D. L.; Li, H. P.; Du, N.; Hou, W. G. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009770.

[41]

Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. G. Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater. 2018, 30, 1704156.

[42]

Liu, W.; Wang, X. T.; Wang, F.; Du, K. F.; Zhang, Z. F.; Guo, Y. Z.; Yin, H. Y.; Wang, D. H. A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat. Commun. 2021, 12, 6776.

[43]

Sun, P. L.; Zhou, Y. T.; Li, H. Y.; Zhang, H.; Feng, L. G.; Cao, Q.; Liu, S. X.; Wågberg, T.; Hu, G. Z. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency. Appl. Catal. B: Environ. 2022, 310, 121354.

[44]

Zhang, L.; Yang, T.; Zang, W. J.; Kou, Z. K.; Ma, Y. Y.; Waqar, M.; Liu, X. M.; Zheng, L. R.; Pennycook, S. J.; Liu, Z. L. et al. Quasi-paired Pt atomic sites on Mo2C promoting selective four-electron oxygen reduction. Adv. Sci. 2021, 8, 2101344.

[45]

Zhang, X.; Zhang, M. T.; Deng, Y. C.; Xu, M. Q.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B. B.; Yao, S. Y.; Zhang, X. C. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396–401.

[46]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[47]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[48]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[49]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coordin. Chem. Rev. 2023, 482, 215058.

[50]

Ge, J. X.; Hu, J.; Zhu, Y. T.; Zeb, Z.; Zang, D. J.; Qin, Z. X.; Huang, Y. C.; Zhang, J. W.; Wei, Y. G. Recent advances in polyoxometalates for applications in electrocatalytic hydrogen evolution reaction. Acta Phys. Chim. Sin. 2020, 36, 1906063.

[51]

Huang, Y. C.; Hu, J.; Xu, H. X.; Bian, W.; Ge, J. X.; Zang, D. J.; Cheng, D. J.; Lv, Y. K.; Zhang, C.; Gu, J. et al. Fine tuning electronic structure of catalysts through atomic engineering for enhanced hydrogen evolution. Adv. Energy Mater. 2018, 8, 1800789.

[52]

Huang, Y. C.; Ge, J. X.; Hu, J.; Zhang, J. W.; Hao, J.; Wei, Y. G. Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701601.

[53]

Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

[54]

Huang, Y. C.; Zhou, W. B.; Kong, W. C.; Chen, L. L.; Lu, X. L.; Cai, H. Q.; Yuan, Y. R.; Zhao, L. M.; Jiang, Y. Y.; Li, H. T. et al. Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production. Adv. Sci. 2022, 9, 2204949.

[55]

Liu, Y.; Yue, C. L.; Sun, F. Y.; Bao, W. J.; Chen, L. L.; Zeb, Z.; Wang, C. Z.; Ma, S. Y.; Zhang, C.; Sun, D. F. et al. Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chem. Eng. J. 2023, 454, 140105.

[56]

Li, S.; Zhao, Z. Y.; Ma, T.; Pachfule, P.; Thomas, A. Superstructures of organic-polyoxometalate Co-crystals as precursors for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202112298.

[57]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[58]

Day, V. W.; Goloboy, J. C.; Klemperer, W. G. Synthesis and solid state structures of the hydrogen-bonded hexamolybdoplatinate(IV) tetramer [(PtMo6O24)4H23]9− and the hexamolybdoplatinate(IV) trimers [(PtMo6O24)3H16]8− and [(PtMo6O24)3H14]10−. Eur. J. Inorg. Chem. 2009, 2009, 5079–5087.

[59]

Ikegami, S.; Kani, K.; Ozeki, T.; Yagasaki, A. Methylated molybdoplatinate-its unexpected ability to absorb methanol. Chem. Commun. 2010, 46, 785–787.

[60]

Imai, J.; Ozeki, T.; Yagasaki, A. Reaction of the hydrogen-bonded hexamolybdoplatinate tetramer [H23(PtMo6O24)4]9− with methanol: formation of the methylated hydrogen-bonded hexamolybdoplatinate trimer [(H4Me2PtMo6O24)(H3Me3PtMo6O24)2]6−. Chem. Lett. 2015, 45, 19–20.

[61]

Chen, Y. F.; Gao, B.; Wang, M. Y.; Xiao, X.; Lv, A. J.; Jiao, S. Q.; Chu, P. K. Dual-phase MoC–Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction. Nano Energy 2021, 90, 106533.

[62]

Xiao, T. C.; York, A. P. E.; Al-Megren, H.; Williams, C. V.; Wang, H. T.; Green, M. L. H. Preparation and characterisation of bimetallic cobalt and molybdenum carbides. J. Catal. 2001, 202, 100–109.

[63]

Greczynski, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem., Int. Ed. 2020, 59, 5002–5006.

[64]
Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics Division: Minnesota, 1979.
[65]

Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399–3405.

[66]

Zhou, X. F.; Yu, Z. X.; Yao, Y.; Jiang, Y.; Rui, X. H.; Liu, J. Q.; Yu, Y. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries. Adv. Mater. 2022, 34, 2200479.

[67]

Yu, W. H.; Huang, H.; Qin, Y. N.; Zhang, D.; Zhang, Y. Y.; Liu, K.; Zhang, Y.; Lai, J. P.; Wang, L. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution. Adv. Energy Mater. 2022, 12, 2200110.

[68]

Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

[69]

Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, H. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[70]

Ma, T.; Cao, H.; Li, S.; Cao, S. J.; Zhao, Z. Y.; Wu, Z. H.; Yan, R.; Yang, C. D.; Wang, Y.; van Aken, P. A. et al. Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv. Mater. 2022, 34, 2206368.

[71]

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

[72]

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

[73]

Tian, Z. Y.; Han, X. Q.; Du, J.; Li, Z. B.; Ma, Y. Y.; Han, Z. G. Bio-inspired FeMo2S4 microspheres as bifunctional electrocatalysts for boosting hydrogen oxidation/evolution reactions in alkaline solution. ACS Appl. Mater. Interfaces. 2023, 15, 11853–11865.

[74]

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

File
12274_2023_5666_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2023
Revised: 09 March 2023
Accepted: 12 March 2023
Published: 20 April 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22171287, 21901136, 51972342, 51972345, 22105226, and 51872056), Taishan Scholar Project of Shandong Province (Nos. tsqn202103046 and ts20190922), Natural Science Foundation of Shandong Province (Nos. ZR2022QE175 and ZR2019ZD51), Fundamental Research Funds for the Central Universities (Nos. 20CX06024A, 22CX01002A-1, and 21CX06002A), China Postdoctoral Science Foundation (Nos. 2019M650027 and 2019TQ0169), National Natural Science Foundation of Beijing (No. 2204082), and Shandong Province Postdoctoral Innovative Talent Support Program (No. SDBX20200004).

Return