Journal Home > Volume 16 , Issue 7

Poor permeation of drugs and “immune-cold” tumor microenvironment in solid tumors are the two major challenges which lead to the inefficient therapeutic efficacy for cancer treatment. Here, light-activated penetrable nanoparticles (PEG-VAL&DOX&ICG@RNPs) for co-delivery of the chemotherapeutic drug doxorubicin (DOX), the photosensitizer agent indocyanine green (ICG), and the angiotensin II receptor blockers valsartan (VAL) were developed to achieve deep drug penetration and synergistic photo-chemo-immunotherapy of solid tumor. Studies showed that under the first-wave of laser irradiation, the polyethylene glycol (PEG) hydrophilic layer as an “inert” surface could detach from the nanoparticles, release VAL and expose the arginine-rich peptide modified-cores that can facilitate deep drug penetration via a transcytosis pathway. When exposed to the second-wave of laser irradiation, the synergistic chemo-photo-immunotherapy can be achieved. As expected, in 4T1 tumor-bearing mice, PEG-VAL&DOX&ICG@RNPs treatment could effectively inhibit the growth of tumors, down-regulate α-smooth muscle actin expression level of cancer-associated fibroblasts cells in tumors, induce dendritic cells (DCs) maturation, and promote intratumoral infiltration of cytotoxic T lymphocytes. Moreover, combination therapy by PEG-VAL&DOX&ICG@RNPs and anti-PD-1 monoclonal antibody can elicit memory T cell response for preventing tumor recurrence and metastasis in vivo. This work provides a promising delivery strategy to overcome the current limitations of nanomedicine for achieving more effective therapeutic index of “immune-cold” solid tumor treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light-activated arginine-rich peptide-modified nanoparticles for deep-penetrating chemo-photo-immunotherapy of solid tumor

Show Author's information Yonghua Gong1,§Jinyang Zhang1,§Yan Lu1Dong Wan2Jie Pan2( )Guilei Ma1( )
Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
School of Environmental and Chemical Engineering, Tiangong University, Tianjin 300387, China

§ Yonghua Gong and Jinyang Zhang contributed equally to this work.

Abstract

Poor permeation of drugs and “immune-cold” tumor microenvironment in solid tumors are the two major challenges which lead to the inefficient therapeutic efficacy for cancer treatment. Here, light-activated penetrable nanoparticles (PEG-VAL&DOX&ICG@RNPs) for co-delivery of the chemotherapeutic drug doxorubicin (DOX), the photosensitizer agent indocyanine green (ICG), and the angiotensin II receptor blockers valsartan (VAL) were developed to achieve deep drug penetration and synergistic photo-chemo-immunotherapy of solid tumor. Studies showed that under the first-wave of laser irradiation, the polyethylene glycol (PEG) hydrophilic layer as an “inert” surface could detach from the nanoparticles, release VAL and expose the arginine-rich peptide modified-cores that can facilitate deep drug penetration via a transcytosis pathway. When exposed to the second-wave of laser irradiation, the synergistic chemo-photo-immunotherapy can be achieved. As expected, in 4T1 tumor-bearing mice, PEG-VAL&DOX&ICG@RNPs treatment could effectively inhibit the growth of tumors, down-regulate α-smooth muscle actin expression level of cancer-associated fibroblasts cells in tumors, induce dendritic cells (DCs) maturation, and promote intratumoral infiltration of cytotoxic T lymphocytes. Moreover, combination therapy by PEG-VAL&DOX&ICG@RNPs and anti-PD-1 monoclonal antibody can elicit memory T cell response for preventing tumor recurrence and metastasis in vivo. This work provides a promising delivery strategy to overcome the current limitations of nanomedicine for achieving more effective therapeutic index of “immune-cold” solid tumor treatment.

Keywords: transcytosis, deep penetration, light-activated nanoparticles, chemo-photo-immunotherapy, solid tumor

References(44)

[1]

Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 2021, 35, e22900.

[2]

Yan, Y. Y.; Kumar, A. B.; Finnes, H.; Markovic, S. N.; Park, S.; Dronca, R. S.; Dong, H. D. Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol. 2018, 9, 1739.

[3]

Hellmann, M. D.; Friedman, C. F.; Wolchok, J. D. Combinatorial cancer immunotherapies. Adv. Immunol. 2016, 130, 251–277.

[4]

Bhatia, K.; Bhumika; Das, A. Combinatorial drug therapy in cancer-new insights. Life Sci. 2020, 258, 118134.

[5]

Yagawa, Y.; Tanigawa, K.; Kobayashi, Y.; Yamamoto, M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J. Cancer Metastasis Treat. 2017, 3, 218–230.

[6]

De Angelis, B.; Depalo, N.; Petronella, F.; Quintarelli, C.; Curri, M. L.; Pani, R.; Calogero, A.; Locatelli, F.; De Sio, L. Stimuli-responsive nanoparticle-assisted immunotherapy: A new weapon against solid tumours. J. Mater. Chem. B 2020, 8, 1823–1840.

[7]

Dewhirst, M. W.; Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 2017, 17, 738–750.

[8]

Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

[9]

Zhou, Q.; Dong, C. Y.; Fan, W. F.; Jiang, H. P.; Xiang, J. J.; Qiu, N. S.; Piao, Y.; Xie, T.; Luo, Y. W.; Li, Z. C. et al. Tumor Extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020, 240, 119902.

[10]

Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

[11]

Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

[12]

Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

[13]

Liu, Y.; Huo, Y. Y.; Yao, L.; Xu, Y. W.; Meng, F. Q.; Li, H. F.; Sun, K.; Zhou, G. D.; Kohane, D. S.; Tao, K. Transcytosis of nanomedicine for tumor penetration. Nano Lett. 2019, 19, 8010–8020.

[14]

Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

[15]

Chen, S. Q.; Zhong, Y.; Fan, W. F.; Xiang, J. J.; Wang, G. W.; Zhou, Q.; Wang, J. Q.; Geng, Y.; Sun, R.; Zhang, Z. et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng. 2021, 5, 1019–1037.

[16]

Zhu, X. H.; Li, C.; Lu, Y.; Liu, Y. J.; Wan, D.; Zhu, D. W.; Pan, J.; Ma, G. L. Tumor microenvironment-activated therapeutic peptide- conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment. Acta Biomater. 2021, 119, 337–348.

[17]

Lakkadwala, S.; Dos Santos Rodrigues, B.; Sun, C. W.; Singh, J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine 2020, 23, 102112.

[18]

Veiseh, O.; Kievit, F. M.; Mok, H.; Ayesh, J.; Clark, C.; Fang, C.; Leung, M.; Arami, H.; Park, J. O.; Zhang, M. Q. Cell Transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 2011, 32, 5717–5725.

[19]

Zhang, X.; Xu, X. H.; Li, Y. C.; Hu, C.; Zhang, Z. J.; Gu, Z. W. Virion-like membrane-breaking nanoparticles with tumor-activated cell-and-tissue dual-penetration conquer impermeable cancer. Adv. Mater. 2018, 30, 1707240.

[20]

Donlon, N. E.; Power, R.; Hayes, C.; Reynolds, J. V.; Lysaght, J. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 2021, 502, 84–96.

[21]

Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.

[22]

Liu, J. J.; Chen, Q.; Feng, L. Z.; Liu, Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 2018, 21, 55–73.

[23]

Lang, J. Y.; Zhao, X.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Ding, Y. P.; Guan, J. J.; Ji, T. J.; Zhao, Y.; Nie, G. J. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano 2019, 13, 12357–12371.

[24]

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.

[25]

Zhu, Y.; Wen, L. J.; Shao, S. H.; Tan, Y. N.; Meng, T. T.; Yang, X. Q.; Liu, Y. P.; Liu, X.; Yuan, H.; Hu, F. Q. Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles. Biomaterials 2018, 161, 33–46.

[26]

Hu, C. H.; Liu, X. Y.; Ran, W.; Meng, J.; Zhai, Y. H.; Zhang, P. C.; Yin, Q.; Yu, H. J.; Zhang, Z. W.; Li, Y. P. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials 2017, 144, 60–72.

[27]

Chauhan, V. P.; Chen, I. X.; Tong, R.; Ng, M. R.; Martin, J. D.; Naxerova, K.; Wu, M. W.; Huang, P. G.; Boucher, Y.; Kohane, D. S. et al. Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 10674–10680.

[28]

Zhang, Y. D.; Li, H. B.; Wang, Q.; Hao, X. Y.; Li, H. M.; Sun, H. Q.; Han, L.; Zhang, Z. R.; Zou, Q. M.; Sun, X. Rationally designed self-assembling nanoparticles to overcome mucus and epithelium transport barriers for oral vaccines against Helicobacter pylori. Adv. Funct. Mater. 2018, 28, 1802675.

[29]

Zmerli, I.; Ibrahim, N.; Cressey, P.; Denis, S.; Makky, A. Design and synthesis of new PEGylated polydopamine-based nanoconstructs bearing ROS-responsive linkers and a photosensitizer for bimodal photothermal and photodynamic therapies against cancer. Mol. Pharmaceutics 2021, 18, 3623–3637.

[30]

Liu, L. H.; Qiu, W. X.; Li, B.; Zhang, C.; Sun, L. F.; Wan, S. S.; Rong, L.; Zhang, X. Z. A red light activatable multifunctional prodrug for image-guided photodynamic therapy and cascaded chemotherapy. Adv. Funct. Mater. 2016, 26, 6257–6269.

[31]

Zhang, H. J.; Mao, Z.; Kang, Y.; Zhang, W.; Mei, L.; Ji, X. Y. Redox regulation and its emerging roles in cancer treatment. Coordin. Chem. Rev. 2023, 475, 214897.

[32]

Chen, Q.; Chen, G. J.; Chen, J. W.; Shen, J. J.; Zhang, X. D.; Wang, J. Q.; Chan, A.; Gu, Z. Bioresponsive protein complex of aPD1 and aCD47 antibodies for enhanced immunotherapy. Nano Lett. 2019, 19, 4879–4889.

[33]

Lu, Y.; Gong, Y. H.; Zhu, X. H.; Dong, X.; Zhu, D. W.; Ma, G. L. Design of light-activated nanoplatform through boosting "eat me" signals for improved CD47-blocking immunotherapy. Adv. Healthc. Mater. 2022, 11, 2102712.

[34]

Silva, S.; Almeida, A. J.; Vale, N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 2019, 9, 22.

[35]

Kim, J. S.; Yoon, T. J.; Yu, K. N.; Noh, M. S.; Woo, M.; Kim, B. G.; Lee, K. H.; Sohn, B. H.; Park, S. B.; Lee, J. K. et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 2006, 7, 321–326.

[36]

He, Z. L.; Liu, K. Z.; Manaloto, E.; Casey, A.; Cribaro, G. P.; Byrne, H. J.; Tian, F. R.; Barcia, C.; Conway, G. E.; Cullen, P. J. et al. Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death. Sci. Rep. 2018, 8, 5298.

[37]

Liu, M.; Anderson, R. C.; Lan, X. L.; Conti, P. S.; Chen, K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med. Res. Rev. 2020, 40, 909–930.

[38]

Kuai, R.; Yuan, W. M.; Son, S.; Nam, J.; Xu, Y.; Fan, Y. C.; Schwendeman, A.; Moon, J. J. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 2018, 4, eaao1736.

[39]

Xu, Y. D.; Ma, S.; Zhao, J. Y.; Si, X. H.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res. 2022, 15, 1183–1192.

[40]

Zhou, J. J.; Ma, X. B.; Li, H.; Chen, D. R.; Mao, L.; Yang, L. L.; Zhang, T.; Qiu, W.; Xu, Z. G.; Sun, Z. J. Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Res. 2022, 15, 3398–3408.

[41]

Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 670–680.

[42]

Song, Y. L.; Wang, Y. D.; Wang, S. Y.; Cheng, Y.; Lu, Q. L.; Yang, L. F.; Tan, F. P.; Li, N. Immune-adjuvant loaded Bi2Se3 nanocage for photothermal-improved PD-L1 checkpoint blockade immune-tumor metastasis therapy. Nano Res. 2019, 12, 1770–1780.

[43]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[44]

Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

File
12274_2023_5665_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2023
Revised: 02 March 2023
Accepted: 12 March 2023
Published: 11 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge financial support from National Natural Science Foundation of China (Nos. 82172089, 22178270 and 22078246), the Fundamental Research Funds for the Central Universities (No. 2019PT320028), and CAMS Innovation Fund for Medical Sciences (No. 2021-I2M-1-058).

Return