Journal Home > Volume 16 , Issue 7

Scanning electrochemical microscopy (SECM) is an attractive technology to in-situ characterize the structural evolution and catalytic performance for various electrocatalysts. However, spatial and temporal resolution coupling are still the obstacles that limit its wide applications. Herein, a new operation mode, Fast Scan mode, was developed by improving the dual-pass scan mode, designing novel hardware structure, and employing thermal drift calibration software to achieve a high spatial and temporal resolution simultaneously. The temporal speed can achieve 4 Hz for a high spatial resolution (less than 30 nm) image. This operation mode was employed to dynamically track the phase transition process of molybdenum disulfide (MoS2) over time and characterize the hydrogen evolution reaction (HER) catalytic activity on the edge of semiconducting MoS2 quantitatively while minimizing the diffusional broadening effect and total amount of catalytic products generated above the surface. This new approach should be useful for in-situ tracking dynamic electrochemical processes, establishing the structure-activity relationship for structural complex electrocatalysts, and offering a strategy for high-speed scanning with other electrochemical imaging techniques.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast Scan mode of scanning electrochemical microscopy: In-situ characterization of phase transition and mapping the hydrogen evolution activity for MoS2

Show Author's information Zhenyu Wang1Tong Sun1( )Changan HuangFu2Sisi Jiang1Chaoqun Gu1Liying Jiao2Zonghua Wang1( )
College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Scanning electrochemical microscopy (SECM) is an attractive technology to in-situ characterize the structural evolution and catalytic performance for various electrocatalysts. However, spatial and temporal resolution coupling are still the obstacles that limit its wide applications. Herein, a new operation mode, Fast Scan mode, was developed by improving the dual-pass scan mode, designing novel hardware structure, and employing thermal drift calibration software to achieve a high spatial and temporal resolution simultaneously. The temporal speed can achieve 4 Hz for a high spatial resolution (less than 30 nm) image. This operation mode was employed to dynamically track the phase transition process of molybdenum disulfide (MoS2) over time and characterize the hydrogen evolution reaction (HER) catalytic activity on the edge of semiconducting MoS2 quantitatively while minimizing the diffusional broadening effect and total amount of catalytic products generated above the surface. This new approach should be useful for in-situ tracking dynamic electrochemical processes, establishing the structure-activity relationship for structural complex electrocatalysts, and offering a strategy for high-speed scanning with other electrochemical imaging techniques.

Keywords: molybdenum disulfide, phase transition, hydrogen evolution reaction, scanning electrochemical microscopy, high-speed scanning

References(44)

[1]

Bard, A. J.; Fan, F. R. F.; Pierce, D. T.; Unwin, P. R.; Wipf, D. O.; Zhou, F. M. Chemical imaging of surfaces with the scanning electrochemical microscope. Science 1991, 254, 68–74.

[2]

Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K. C.; Bard, A. J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 8560–8568.

[3]

Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120–14123.

[4]

Dufil, Y.; Dietrich, M.; Zigah, D.; Favier, F.; Sadki, S.; Gentile, P.; Fontaine, O. Local degradation of PEDOT: PSS on silicon nanostructures using scanning electrochemical microscopy. Small 2023, 19, 2206789.

[5]

Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Kisieliute, A.; Bucinskas, V.; Ramanavicius, A. Scanning electrochemical microscopy in the development of enzymatic sensors and immunosensors. Biosens. Bioelectron. 2019, 141, 111411.

[6]

Pierce, D. T.; Unwin, P. R.; Bard, A. J. Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 1992, 64, 1795–1804.

[7]

Stephens, L. I.; Payne, N. A.; Mauzeroll, J. Super-resolution scanning electrochemical microscopy. Anal. Chem. 2020, 92, 3958–3963.

[8]

Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Babakinejad, B.; Macpherson, J.; Unwin, P. R.; Shiku, H.; Gorelik, J.; Klenerman, D.; Korchev, Y. E. et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA 2012, 109, 11540–11545.

[9]

Sun, T.; Wang, D. C.; Mirkin, M. V.; Cheng, H.; Zheng, J. C.; Richards, R. M.; Lin, F.; Xin, H. L. Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proc. Natl. Acad. Sci. USA 2019, 116, 11618–11623.

[10]

Balla, R. J.; Jantz, D. T.; Kurapati, N.; Chen, R.; Leonard, K. C.; Amemiya, S. Nanoscale intelligent imaging based on real-time analysis of approach curve by scanning electrochemical microscopy. Anal. Chem. 2019, 91, 10227–10235.

[11]

Jantz, D. T.; Balla, R. J.; Huang, S. H.; Kurapati, N.; Amemiya, S.; Leonard, K. C. Simultaneous intelligent imaging of nanoscale reactivity and topography by scanning electrochemical microscopy. Anal. Chem. 2021, 93, 8906–8914.

[12]

Sun, T.; Zhang, H. Y.; Wang, X.; Liu, J.; Xiao, C. X.; Nanayakkara, S. U.; Blackburn, J. L.; Mirkin, M. V.; Miller, E. M. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets. Nanoscale Horiz. 2019, 4, 619–624.

[13]

Kiss, A.; Nagy, G. New SECM scanning algorithms for improved potentiometric imaging of circularly symmetric targets. Electrochim. Acta 2014, 119, 169–174.

[14]

Momotenko, D.; Byers, J. C.; McKelvey, K.; Kang, M.; Unwin, P. R. High-speed electrochemical imaging. ACS Nano 2015, 9, 8942–8952.

[15]

Lesch, A.; Vaske, B.; Meiners, F.; Momotenko, D.; Cortés-Salazar, F.; Girault, H. H.; Wittstock, G. Parallel imaging and template-free patterning of self-assembled monolayers with soft linear microelectrode arrays. Angew. Chem., Int. Ed. 2012, 51, 10413–10416.

[16]

Kuss, S.; Trinh, D.; Mauzeroll, J. High-speed scanning electrochemical microscopy method for substrate kinetic determination: Application to live cell imaging in human cancer. Anal. Chem. 2015, 87, 8102–8106.

[17]

Dorfi, A. E.; Yan, J. K.; Wright, J.; Esposito, D. V. Compressed sensing image reconstruction of scanning electrochemical microscopy measurements carried out at ultrahigh scan speeds using continuous line probes. Anal. Chem. 2021, 93, 12574–12581.

[18]

Dorfi, A. E.; Kuo, H. W.; Smirnova, V.; Wright, J.; Esposito, D. V. Design and operation of a scanning electrochemical microscope for imaging with continuous line probes. Rev. Sci. Instrum. 2019, 90, 083702.

[19]

Novak, P.; Li, C.; Shevchuk, A. I.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T. G.; Gorelik, J.; Ostanin, V. P.; Lab, M. J. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 2009, 6, 279–281.

[20]

Lin, T. E.; Lu, Y. J.; Sun, C. L.; Pick, H.; Chen, J. P.; Lesch, A.; Girault, H. H. Soft electrochemical probes for mapping the distribution of biomarkers and injected nanomaterials in animal and human tissues. Angew. Chem., Int. Ed. 2017, 56, 16498–16502.

[21]

Lin, Y. H.; Tsai, C. N.; Chen, P. F.; Lin, Y. T.; Darvishi, S.; Girault, H. H.; Lin, T. Y.; Liao, M. Y.; Lin, T. E. AI-assisted fusion of scanning electrochemical microscopy images using novel soft probe. ACS Meas. Sci. Au 2022, 2, 576–583.

[22]

Liu, L.; Wu, S.; Hu, X. D.; Pang, H.; Hu, X. T. Design of high-speed atomic force microscope with a separated X-scanner. Opt. Precis. Eng. 2018, 26, 662–671.

[23]

Bae, J. H.; Brocenschi, R. F.; Kisslinger, K.; Xin, H. L.; Mirkin, M. V. Dissolution of Pt during oxygen reduction reaction produces Pt nanoparticles. Anal. Chem. 2017, 89, 12618–12621.

[24]

Yin, B. H.; Chen, D. X.; Lin, Y. S.; Chu, M. Z.; Han, L. Design of AFM system with high speed and large scanning range. Opt. Precis. Eng. 2011, 19, 2651–2656.

[25]

Gu, C. Q.; Sun, T.; Wang, Z. Y.; Jiang, S. S.; Wang, Z. H. High resolution electrochemical imaging for sulfur vacancies on 2D molybdenum disulfide. Small Methods, 2023, 7, 2201529.

[26]

Benson, E. E.; Zhang, H. Y.; Schuman, S. A.; Nanayakkara, S. U.; Bronstein, N. D.; Ferrere, S.; Blackburn, J. L.; Miller, E. M. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 2018, 140, 441–450.

[27]

Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. R. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem., Int. Ed. 2013, 52, 13057–13061.

[28]

Feng, Y. Y.; Zhang, T.; Zhang, J. H.; Fan, H.; He, C.; Song, J. X. 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 2020, 16, 2002850.

[29]

Huang, J. X.; Pan, X. L.; Liao, X. B.; Yan, M. Y.; Dunn, B. C.; Luo, W.; Mai, L. Q. In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS2 at nanoscale. Nanoscale 2020, 12, 9246–9254.

[30]

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

[31]
Huang, Q. M.; Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci China Chem. 2018, 61, 222–227.
[32]

Mendes, R. G.; Pang, J. B.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z. F.; Rümmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 2019, 13, 978–995.

[33]

Tai, K. L.; Huang, C. W.; Cai, R. F.; Huang, G. M.; Tseng, Y. T.; Chen, J.; Wu, W. W. Atomic-scale fabrication of in-plane heterojunctions of few-layer MoS2 via in situ scanning transmission electron microscopy. Small 2020, 16, 1905516.

[34]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[35]

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

[36]

Gan, X. R.; Lee, L. Y. S.; Wong, K. Y.; Lo, T. W.; Ho, K. H.; Lei, D. Y.; Zhao, H. M. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Appl. Energy Mater. 2018, 1, 4754–4765.

[37]

Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

[38]

Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 2017, 358, 1187–1192.

[39]

Lu, X. X.; Li, M. Z.; Peng, Y.; Xi, X. Y.; Li, M.; Chen, Q. J.; Dong, A. G. Direct probing of the oxygen evolution reaction at single NiFe2O4 nanocrystal superparticles with tunable structures. J. Am. Chem. Soc. 2021, 143, 16925–16929.

[40]

Kang, M.; Perry, D.; Bentley, C. L.; West, G.; Page, A.; Unwin, P. R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles. ACS Nano 2017, 11, 9525–9535.

[41]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[42]
Bard, A. J.; Mirkin, M. V. Scanning Electrochemical Microscopy; CRC Press, Boca Raton, USA, FL, 2012
[43]

Sun, P.; Mirkin, M. V. Kinetics of electron-transfer reactions at nanoelectrodes. Anal. Chem. 2006, 78, 6526–6534.

[44]

Wang, Y. X.; Kececi, K.; Velmurugan, J.; Mirkin, M. V. Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): A new tool for imaging and kinetic studies. Chem. Sci. 2013, 4, 3606–3616.

File
12274_2023_5664_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 January 2023
Revised: 08 March 2023
Accepted: 12 March 2023
Published: 13 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The support of this work by the National Natural Science Foundation of China (No. 22204088), the Natural Science Foundation of Shandong Province (Nos. ZR202103040753 and ZR2020MB063) and the Taishan Scholar Program of Shandong Province (No. ts201511027) is gratefully acknowledged. The authors would like to thank Dr. Gong Zhang from Tsinghua University and Dr. Michael V. Mirkin from City University of New York for helpful discussions. And the authors also thank Dr. Xiyue Cao, Dr. Huiqi Wang, Dr. Lili Lv and Dr. Ru Li from Instrumental Analysis Center of Qingdao University for their assistance with the characterization of MoS2.

Return