Journal Home > Volume 16 , Issue 8

Microwave absorbing materials (MAMs) are playing an increasingly essential role in the development of wireless communications, high-power electronic devices, and advanced target detection technology. MAMs with a broad-bandwidth response are particularly important in the area of communication security, radiation prevention, electronic reliability, and military stealth. Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response, a number of challenges still remain, and the structure–function relationship of MAMs is still far from being completely understood. Herein, the advances in the design and research of MAMs with a broad-bandwidth response are outlined. The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives: the chemical combination strategy, morphological control strategy, and macrostructure control strategy. Several important results as well as design principles and absorption mechanisms are highlighted. A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided. The main challenges, new opportunities, and future perspectives in this promising field are also presented.


menu
Abstract
Full text
Outline
About this article

Advances in microwave absorbing materials with broad-bandwidth response

Show Author's information Susu Bao,§Meixi Zhang,§Zhiyuan Jiang( )Zhaoxiong XieLansun Zheng
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

§ Susu Bao and Meixi Zhang contributed equally to this work.

Abstract

Microwave absorbing materials (MAMs) are playing an increasingly essential role in the development of wireless communications, high-power electronic devices, and advanced target detection technology. MAMs with a broad-bandwidth response are particularly important in the area of communication security, radiation prevention, electronic reliability, and military stealth. Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response, a number of challenges still remain, and the structure–function relationship of MAMs is still far from being completely understood. Herein, the advances in the design and research of MAMs with a broad-bandwidth response are outlined. The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives: the chemical combination strategy, morphological control strategy, and macrostructure control strategy. Several important results as well as design principles and absorption mechanisms are highlighted. A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided. The main challenges, new opportunities, and future perspectives in this promising field are also presented.

Keywords: morphology control, microwave absorbing materials, broad-bandwidth response, macro-structure control, magnetic–dielectric synergy

References(279)

[1]

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

[2]

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

[3]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[4]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[5]

Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

[6]

Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.

[7]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[8]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[9]

Tao, J. Q.; Xu, L. L.; Jin, H. S.; Gu, Y. S.; Zhou, J. T.; Yao, Z. J.; Tao, X. W.; Chen, P.; Wang, D. H.; Li, Z. et al. Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv. Powder Mater. 2023, 2, 100091.

[10]

Tirkey, M. M.; Gupta, N. The quest for perfect electromagnetic absorber: A review. Int. J. Microw. Wireless Technol. 2019, 11, 151–167.

[11]

Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.

[12]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[13]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[14]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

[15]

Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

[16]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[17]

Zhi, D. D.; Li, T.; Li, J. Z.; Ren, H. S.; Meng, F. B. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B: Eng. 2021, 211, 108642.

[18]

Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

[19]

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B: Eng. 2021, 207, 108562.

[20]

Bhattacharjee, Y.; Bose, S. Core–shell nanomaterials for microwave absorption and electromagnetic interference shielding: A review. ACS Appl. Nano Mater. 2021, 4, 949–972.

[21]

Wang, G. H.; Ong, S. J. H.; Zhao, Y.; Xu, Z. J.; Ji, G. B. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387.

[22]

Yan, J.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Li, T. H.; Zhao, Y.; Liu, P. B. Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 2021, 61, 646–687.

[23]

Tao, J. Q.; Tan, R. Y.; Xu, L. L.; Zhou, J. T.; Yao, Z. J.; Lei, Y. M.; Chen, P.; Li, Z.; Ou, J. Z. Ion-exchange strategy for metal-organic frameworks-derived composites with tunable hollow porous and microwave absorption. Small Methods 2022, 6, 2200429.

[24]

Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng.: R: Rep. 2021, 145, 100627.

[25]

Green, M.; Tian, L. H.; Xiang, P.; Murowchick, J.; Tan, X. Y.; Chen, X. B. FeP nanoparticles: A new material for microwave absorption. Mater. Chem. Front. 2018, 2, 1119–1125.

[26]

Rozanov, K. N.; Starostenko, S. N. Numerical study of bandwidth of radar absorbers. Eur. Phys. J. Appl. Phys. 1999, 8, 147–151.

[27]

Rozanov, K. N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 2000, 48, 1230–1234.

[28]

Kuzhir, P.; Celzard, A.; Chen, X. B. Microwave absorption by carbon-based materials and structures. J. Appl. Phys. 2022, 131, 200401.

[29]
Choudhary, A.; Pal, S.; Sarkhel, G. Broadband millimeter-wave absorbers: A review. Int. J. Microw. Wireless Technol., in press, https://doi.org/10.1017/S1759078722000162.
[30]

Tretyakov, S. Thin absorbers: Operational principles and various realizations. IEEE Electromagn. Compat. Mag. 2016, 5, 61–66.

[31]

Ra’di, Y.; Simovski, C. R.; Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations. Phys. Rev. Appl. 2015, 3, 037001.

[32]

Green, M.; Li, Y.; Peng, Z. H.; Chen, X. B. Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. J. Magn. Magn. Mater. 2020, 497, 165974.

[33]

Green, M.; Xiang, P.; Liu, Z. Q.; Murowchick, J.; Tan, X. Y.; Huang, F. Q.; Chen, X. B. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J. Materiomics 2019, 5, 133–146.

[34]

Huang, M. Q.; Wang, L.; You, W. B.; Che, R. C. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021, 17, 2101416.

[35]

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

[36]

Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. F.; Shi, Q.; Xiao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017, 124, 506–514.

[37]

Yao, X.; Huang, Y. Q.; Li, G. Y.; He, Q. T.; Chen, H. Y.; Weng, X. L.; Liang, D. F.; Xie, J. L.; Deng, L. J. Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. Int. J. RF Microw. Comput. Aid. Eng. 2022, 32, e23222.

[38]

Lin, H. R.; Green, M.; Xu, L. J.; Chen, X. B.; Ma, B. W. Microwave absorption of organic metal halide nanotubes. Adv. Mater. Interfaces 2020, 7, 1901270.

[39]

Green, M.; Chen, X. B. Recent progress of nanomaterials for microwave absorption. J. Materiomics 2019, 5, 503–541.

[40]

Qu, S. C.; Hou, Y. X.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118.

[41]

Wang, J. Y.; Xi, R.; Cai, T.; Lu, H.; Zhu, R. R.; Zheng, B.; Chen, H. S. Deep neural network with data cropping algorithm for absorptive frequency-selective transmission metasurface. Adv. Opt. Mater. 2022, 10, 2200178.

[42]

Wang, W.; Guo, J. X.; Long, C.; Li, W.; Guan, J. G. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111.

[43]

Tong, G. X.; Wu, W. H.; Hua, Q.; Miao, Y. Q.; Guan, J. G.; Qian, H. S. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. J. Alloys Compd. 2011, 509, 451–456.

[44]

Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

[45]

Green, M.; Tian, L. H.; Xiang, P.; Murowchick, J.; Tan, X. Y.; Chen, X. B. Co2P nanoparticles for microwave absorption. Mater. Today Nano 2018, 1, 1–7.

[46]

Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale 2021, 13, 2136–2156.

[47]

Green, M.; Liu, Z. Q.; Xiang, P.; Liu, Y.; Zhou, M. J.; Tan, X. Y.; Huang, F. Q.; Liu, L.; Chen, X. B. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light: Sci. Appl. 2018, 7, 87.

[48]

Green, M.; Liu, Z.; Smedley, R.; Nawaz, H.; Li, X.; Huang, F.; Chen, X. Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 2018, 5, 78–86.

[49]

Li, H.; Cao, Z. M.; Lin, J. Y.; Zhao, H.; Jiang, Q. R.; Jiang, Z. Y.; Liao, H. G.; Kuang, Q.; Xie, Z. X. Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale 2018, 10, 1930–1938.

[50]

Darvishzadeh, A.; Nasouri, K. Broadband and tunable high-performance microwave absorption properties by Ni-coated carbon fibers. Mater. Chem. Phys. 2021, 274, 125127.

[51]

Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.

[52]

Chen, C.; Xi, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018, 10, 26.

[53]

Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B: Eng. 2018, 137, 260–277.

[54]

Li, J. S.; Huang, H.; Zhou, Y. J.; Zhang, C. Y.; Li, Z. T. Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 2017, 32, 1213–1230.

[55]

Chen, H. H.; Ma, W. L.; Huang, Z. Y.; Zhang, Y.; Huang, Y.; Chen, Y. S. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 2019, 7, 1801318.

[56]

Zhang, M. M.; Zhang, J. W.; Lv, X. Y.; Zhang, L.; Wei, Y.; Liu, S. C.; Shi, Y. P.; Gong, C. H. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better. J. Mater. Sci.: Mater. Electron. 2018, 29, 5496–5500.

[57]

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

[58]

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

[59]

Lv, H. L.; Guo, Y. H.; Yang, Z. H.; Cheng, Y.; Wang, L. P.; Zhang, B. S.; Zhao, Y.; Xu, Z. J.; Ji, G. B. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 2017, 5, 491–512.

[60]

Wang, T. S.; Liu, Z. H.; Lu, M. M.; Wen, B.; Ouyang, Q. Y.; Chen, Y. J.; Zhu, C. L.; Gao, P.; Li, C. Y.; Cao, M. S. et al. Graphene-Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 2013, 113, 024314.

[61]

Bao, S. S.; Tang, W.; Song, Z. J.; Jiang, Q. R.; Jiang, Z. Y.; Xie, Z. X. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 2020, 12, 18790–18799.

[62]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B: Eng 2020, 199, 108261.

[63]

Zhang, X. J.; Wang, G. S.; Cao, W. Q.; Wei, Y. Z.; Liang, J. F.; Guo, L.; Cao, M. S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478.

[64]

Hu, Q.; Qi, X. S.; Cai, H. B.; Xie, R.; Long, L.; Bai, Z. C.; Jiang, Y.; Qin, S. J.; Zhong, W.; Du, Y. W. Preparation of porous Fe2O3 nanorods-reduced graphene oxide nanohybrids and their excellent microwave absorption properties. Sci. Rep. 2017, 7, 11213.

[65]

Zhu, Z. T.; Sun, X.; Xue, H. R.; Guo, H.; Fan, X. L.; Pan, X. C.; He, J. P. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2014, 2, 6582–6591.

[66]

Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310–320.

[67]

Wang, S. S.; Xu, Y. C.; Fu, R. R.; Zhu, H. H.; Jiao, Q. Z.; Feng, T. Y.; Feng, C. H.; Shi, D. X.; Li, H. S.; Zhao, Y. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 2019, 11, 76.

[68]

Ding, L.; Zhao, X. X.; Huang, Y.; Yan, J.; Li, T. H.; Liu, P. B. Ultra-broadband and covalently linked core–shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption. J. Colloid Interface Sci. 2021, 595, 168–177.

[69]

Weng, X. D.; Li, B. Z.; Zhang, Y.; Lv, X. L.; Gu, G. X. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 2017, 695, 508–519.

[70]

Afghahi, S. S. S.; Shokuhfar, A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core–shell nanostructure. J. Magn. Magn. Mater. 2014, 370, 37–44.

[71]

Yuan, H. R.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 1399–1407.

[72]

Cui, X. J.; Jiang, Q. R.; Wang, C. S.; Wang, S. H.; Jiang, Z. Y.; Li, X. A.; Deng, D. H. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Mater. Today Nano 2021, 16, 100138.

[73]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[74]

Deng, R. X.; Chen, B. B.; Li, H. G.; Li, Z.; Zhang, T.; Yu, Y.; Song, L. X. Adjustable electromagnetic response of ultralight 3D Ti3C2Tx composite via control of crystal defects. Appl. Surf. Sci. 2021, 569, 151053.

[75]

Qing, Y. C.; Zhou, W. C.; Luo, F.; Zhu, D. M. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016, 42, 16412–16416.

[76]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[77]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[78]

He, J.; Liu, S.; Deng, L. W.; Shan, D. Y.; Cao, C.; Luo, H.; Yan, S. Q. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl. Surf. Sci. 2020, 504, 144210.

[79]

He, J.; Shan, D. Y.; Yan, S. Q.; Luo, H.; Cao, C.; Peng, Y. H. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 2019, 492, 165639.

[80]

Yan, S. Q.; Cao, C.; He, J.; He, L. H.; Qu, Z. W. Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 2019, 30, 6537–6543.

[81]

Feng, W. L.; Luo, H.; Wang, Y.; Zeng, S. F.; Tan, Y. Q.; Deng, L. W.; Zhou, X. S.; Zhang, H. B.; Peng, S. M. Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 2019, 9, 3957.

[82]

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

[83]

Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem.—Eur. J. 2013, 19, 6746–6752.

[84]

Hua, J. S.; Ma, W. J.; Liu, X. Y.; Zhuang, Q. X.; Wu, Z. Y.; Huang, H.; Lin, S. L. Efficient microwave traps with markedly enhanced interfacial polarization and impedance matching enabled by dual-shelled, dual-cavity magnetic@dielectric hollow nanospheres. J. Mater. Chem. C 2020, 8, 16489–16497.

[85]

Zhang, C. W.; Peng, Y.; Zhang, T. L.; Guo, W. B.; Yuan, Y.; Li, Y. B. In situ dual-template method of synthesis of inverse-opal Co3O4@TiO2 with wideband microwave absorption. Inorg. Chem. 2021, 90, 18455–18465.

[86]

Dhawan, S. K.; Singh, K.; Bakhshi, A. K.; Ohlan, A. Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth. Met. 2009, 159, 2259–2262.

[87]

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

[88]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Che, R. C. et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 2020, 161, 517–527.

[89]

Wu, Q.; Wang, B. L.; Fu, Y. G.; Zhang, Z. F.; Yan, P. F.; Liu, T. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 2021, 410, 128378.

[90]

Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A: Appl. Sci. Manuf. 2020, 135, 105958.

[91]

Wang, L.; Du, Z.; Bai, X. Y.; Lin, Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021, 591, 76–84.

[92]

Luo, J. H.; Zhang, K.; Cheng, M. L.; Gu, M. M.; Sun, X. K. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

[93]

Najim, M.; Modi, G.; Mishra, Y. K.; Adelung, R.; Singh, D.; Agarwala, V. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 2015, 17, 22923–22933.

[94]

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540.

[95]

Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

[96]

Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 2014, 29, 2198–2210.

[97]

Shi, X. F.; Liu, Z. W.; Li, X.; You, W. B.; Shao, Z. Z.; Che, R. C. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2−x heterostructure for broadband microwave absorption. Chem. Eng. J. 2021, 419, 130020.

[98]

Green, M.; Van Tran, A. T.; Smedley, R.; Roach, A.; Murowchick, J.; Chen, X. B. Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater. Sci. 2019, 1, 48–59.

[99]

Tian, L. H.; Xu, J. L.; Just, M.; Green, M.; Liu, L.; Chen, X. B. Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: From optical to infrared and microwave. J. Mater. Chem. C 2017, 5, 4645–4653.

[100]

Ni, Q. Q.; Zhu, Y. F.; Yu, L. J.; Fu, Y. Q. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174.

[101]

Munir, A. Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: A review. Adv. Polym. Technol. 2017, 36, 362–370.

[102]

Wen, F. S.; Zhang, F.; Liu, Z. Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030.

[103]

Sarkar, D.; Bhattacharya, A.; Nandy, P.; Das, S. Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni-Zn-Co-ferrite magnetic nanoparticles. Mater. Lett. 2014, 120, 259–262.

[104]

Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

[105]

Jiao, Z. M.; Qiu, J. Microwave absorption performance of iron oxide/multiwalled carbon nanotubes nanohybrids prepared by electrostatic attraction. J. Mater. Sci. 2018, 53, 3640–3646.

[106]

Kuang, D. T.; Wang, S. L.; Hou, L. Z.; Luo, H.; Deng, L. W.; Chen, C. S.; Song, M.; Mead, J. L.; Huang, H. A Comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology 2021, 32, 105701.

[107]

Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, S. H. Surface modification of MWCNT with cluster form of Fe2O3/Fe3O4 NPs for improving their microwave absorption performance. Chem. Phys. Lett. 2020, 756, 137823.

[108]

Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. J. Alloys Compd. 2020, 843, 156052.

[109]

Liang, X. H.; Quan, B.; Chen, J. B.; Gu, W. H.; Zhang, B. S.; Ji, G. B. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl. Nano Mater. 2018, 1, 5712–5721.

[110]

Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

[111]

Fan, Y. Q.; Li, Y. H.; Yao, Y. L.; Sun, Y.; Tong, B. H.; Zhan, J. Hierarchically porous carbon sheets/Co nanofibers derived from corncobs for enhanced microwave absorbing properties. Appl. Surf. Sci. 2020, 534, 147510.

[112]

Liu, P. B.; Zhu, C. Y.; Gao, S.; Guan, C.; Huang, Y.; He, W. J. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348–359.

[113]

Wen, B.; Yang, H. B.; Wang, L.; Qiu, Y. Hierarchical CoxAly layered double hydroxide@carbon composites derived from metal-organic frameworks with efficient broadband electromagnetic wave absorption. J. Mater. Chem. C 2020, 8, 16418–16426.

[114]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B: Eng. 2020, 202, 108406.

[115]

Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

[116]

Chen, Y. J.; Cao, M. S.; Wang, T. H.; Wan, Q. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett. 2004, 84, 3367–3369.

[117]

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

[118]

Feng, W.; Wang, Y. M.; Chen, J. C.; Wang, L.; Guo, L. X.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 2016, 108, 52–60.

[119]

Zhou, Z. W.; Chu, L. S.; Hu, S. C. Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Mater. Sci. Eng.: B 2006, 126, 93–96.

[120]

Wu, Q. B.; Zhao, W.; Zeng, G. X.; Zhang, H. Y.; Wei, A. X.; Wang, J. Microwave absorption properties of Mn- and Ni-doped zinc oxides. J. Vac. Sci. Technol. A 2011, 29, 03A113.

[121]

Tang, X.; Hu, K. A. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater. Sci. Eng.: B 2007, 139, 119–123.

[122]

Cao, J.; Fu, W. Y.; Yang, H. B.; Yu, Q. J.; Zhang, Y. Y.; Liu, S. K.; Sun, P.; Zhou, X. M.; Leng, Y.; Wang, S. M. et al. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites. J. Phys. Chem. B 2009, 113, 4642–4647.

[123]

Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102.

[124]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[125]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

[126]

Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

[127]

Bao, S. S.; Song, Z. J.; Mao, R. J.; Li, Y.; Zhang, S. H.; Jiang, Z. Y.; Li, X. A.; Xie, Z. X. Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 2021, 9, 13860–13868.

[128]

Han, Z.; Li, D.; Wang, H.; Liu, X. G.; Li, J.; Geng, D. Y.; Zhang, Z. D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett. 2009, 95, 023114.

[129]

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selectivefrequency absorptions. Nano Res. 2017, 10, 1595–1607.

[130]

Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

[131]

Almessiere, M. A.; Algarou, N. A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Trukhanov, S. V.; Trukhanov, A. V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Mater. Today Nano 2022, 18, 100186.

[132]

Tao, F. J.; Green, M.; Van Tran, A. T.; Zhang, Y. L.; Yin, Y. S.; Chen, X. B. Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 3836–3847.

[133]

Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

[134]

Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

[135]

Jazirehpour, M.; Seyyed Ebrahimi, S. A. Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloys Compd. 2015, 638, 188–196.

[136]

Gill, N.; Singh, J.; Puthucheri, S.; Singh, D. Thin and broadband two-layer microwave absorber in 4–12 GHz with developed flaky cobalt material. Electron. Mater. Lett. 2018, 14, 288–297.

[137]

Li, Q. Q.; Liu, J. W.; Zhao, Y. H.; Zhao, X. B.; You, W. B.; Li, X.; Che, R. C. “Matryoshka doll”-like CeO2 microspheres with hierarchical structure to achieve significantly enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 27540–27547.

[138]

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

[139]

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

[140]

Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

[141]

Cheng, Y. F.; Bi, H.; Wang, C.; Cao, Q.; Jiao, W. L.; Che, R. C. Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. RSC Adv. 2016, 6, 41724–41733.

[142]

Liu, L.; He, P. G.; Zhou, K. C.; Chen, T. F. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv. 2013, 3, 082112.

[143]

Tong, G. X.; Wu, W. H.; Guan, J. G.; Wang, J. P.; Ma, J.; Yuan, J. H.; Wang, S. L. Solution synthesis and novel magnetic properties of ball-chain iron nanofibers. J. Mater. Res. 2011, 26, 2590–2598.

[144]

Liang, C. Y.; Wang, Z. J. Controllable fabricating dielectric-dielectric SiC@C core–shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl. Mater. Interfaces 2017, 9, 40690–40696.

[145]

Huang, Y.; Xie, A. M.; Seidi, F.; Zhu, W. Y.; Li, H.; Yin, S.; Xu, X.; Xiao, H. N. Core–shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption. Chem. Eng. J. 2021, 423, 130307.

[146]

Li, X. H.; Guo, X. H.; Liu, T. C.; Zheng, X. L.; Bai, J. T. Shape-controlled synthesis of Fe nanostructures and their enhanced microwave absorption properties at L-band. Mater. Res. Bull. 2014, 59, 137–141.

[147]

Niu, F. X.; Wang, Y. X.; Ma, L. R.; Xie, Z. Y.; Wang, Y. Y.; Wang, C. G.; Mao, Y. P. Achieving enhanced dielectric property via growing Co-Ni-P nano-alloys on SiC nanowires with 3D conductive network. J. Alloys Compd. 2019, 778, 933–941.

[148]

Li, Z. C.; Ye, F.; Cheng, L. F.; Wang, P.; Guo, C. C.; Li, M. H.; Zhang, L. T. Synthesis of Si-C-N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. J. Mater. Chem. C 2021, 9, 16966–16977.

[149]

Yang, J. N.; Guan, G. G.; Yan, L.; Xu, J. H.; Xiang, J.; Zhang, K. Y. FeCo/ZnO composite nanofibers for broadband and high efficiency microwave absorption. Adv. Mater. Interfaces 2021, 8, 2101047.

[150]

Liu, X. G.; Geng, D. Y.; Meng, H.; Shang, P. J.; Zhang, Z. D. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 2008, 92, 173117.

[151]

He, P.; Hou, Z. L.; Zhang, K. L.; Li, J.; Yin, K.; Feng, S.; Bi, S. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 2017, 52, 8258–8267.

[152]

Wang, X.; Gong, R. Z.; Li, P. G.; Liu, L. Y.; Cheng, W. M. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng.: A 2007, 466, 178–182.

[153]

Gill, N.; Puthucheri, S.; Singh, D.; Agarwala, V. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz. J. Mater. Sci.: Mater. Electron 2017, 28, 1259–1270.

[154]

Qian, K.; Li, Q. F.; Sokolov, A.; Yu, C. J.; Kulik, P.; Fitchorova, O.; Chen, Y. J.; Chinnasamy, C.; Harris, V. G. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites. J. Mater. Sci. Technol. 2021, 83, 256–263.

[155]

Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

[156]

Wang, Z.; Cheng, Z.; Fang, C. Q.; Hou, X. L.; Xie, L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2020, 136, 105956.

[157]

Huang, L. N.; Chen, C. G.; Li, Z. J.; Zhang, Y. P.; Zhang, H.; Lu, J. G.; Ruan, S. C.; Zeng, Y. J. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 2019, 31, 162001.

[158]

Wang, P.; Zhang, J. M.; Chen, Y. W.; Wang, G. W.; Wang, D.; Wang, T.; Li, F. S. Magnetism and microwave absorption properties of Fe3O4 microflake-paraffin composites without and with magnetic orientation. J. Electron. Mater. 2018, 47, 721–729.

[159]

Liu, Y. F.; Wang, J.; Li, J. Y.; Tian, W.; Jian, X. Electrical discharge approach for large-scale and high-thermostability FeCoNi Kovar alloy microwave absorbers covering the low-frequency bands. J. Alloys Compd. 2022, 907, 164509.

[160]

Duan, Y. P.; Pang, H. F.; Wen, X.; Zhang, X. F.; Wang, T. M. Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 2021, 77, 209–216.

[161]

Zhang, Y. L.; Piao, M. X.; Zhang, H.; Zhang, F.; Chu, J.; Wang, X.; Shi, H. F.; Li, C. L. Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances. J. Magn. Magn. Mater. 2019, 486, 165272.

[162]

Abshinova, M. A.; Li, Z. W. Effect of milling time on dynamic permeability values of reduced carbonyl iron filled composites. J. Magn. Magn. Mater. 2014, 369, 147–154.

[163]

Turtelli, R. S.; Grössinger, R.; Kussbach, C.; Sinnecker, J. P. Study of frequency dependencies of the complex magnetic Ac-permeability aftereffect in amorphous Fe64Co21B15 and Fe8Co77B15 alloys. J. Appl. Phys. 1998, 83, 1581–1587.

[164]

Ma, F.; Qin, Y.; Li, Y. Z. Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 2010, 96, 202507.

[165]

Wu, M. Z.; Zhang, Y. D.; Hui, S.; Xiao, T. D.; Ge, S. H.; Hines, W. A.; Budnick, J. I.; Taylor, G. W. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80, 4404–4406.

[166]

He, J. H.; Wang, W.; Guan, J. G. Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 2012, 111, 093924.

[167]

Zhang, X. F.; Dong, X. L.; Huang, H.; Lv, B.; Lei, J. P.; Choi, C. J. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 2007, 40, 5383–5387.

[168]

Aharoni, A. Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys. 1997, 81, 830–833.

[169]

Peng, K. S.; Fang, G.; Guo, C.; Liu, C. Y.; Xu, G. Y.; Xiao, A. D.; Zhang, Y. T.; Zhang, Y. J. Microwave absorption enhancement of FeCoNi contributed by improved crystallinity and flake-like particles. J. Magn. Magn. Mater. 2019, 490, 165488.

[170]

You, W. B.; Che, R. C. Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic–ferromagnetic interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111.

[171]

Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

[172]

Zhang, Y. B.; Wang, P.; Wang, Y.; Qiao, L.; Wang, T.; Li, F. S. Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C core–shell nanoflake composites. J. Mater. Chem. C 2015, 3, 10813–10818.

[173]

Zheng, J. J.; He, X. S.; Li, Y. C.; Zhao, B.; Ye, F. C.; Gao, C. F.; Li, M. J.; Li, X. P.; E, S. J. Viscoelastic and magnetically aligned flaky Fe-based magnetorheological elastomer film for wide-bandwidth electromagnetic wave absorption. Ind. Eng. Chem. Res. 2020, 59, 3425–3437.

[174]

Min, D. D.; Zhou, W. C.; Qing, Y.; Luo, F.; Zhu, D. M. Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J. Mater. Sci. 2017, 52, 2373–2383.

[175]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[176]

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331–343.

[177]

Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

[178]

Liu, Z. W.; Che, R. C.; Wei, Y.; Liu, Y. P.; Elzatahry, A. A.; Dahyan, D. A.; Zhao, D. Broadening microwave absorption via a multi-domain structure. APL Mater. 2017, 5, 046104.

[179]

Deng, Z. M.; Li, Y.; Zhang, H. B.; Zhang, Y.; Luo, J. Q.; Liu, L. X.; Yu, Z. Z. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. Compos. Part B: Eng. 2019, 177, 107346.

[180]

Zeng, Q.; Xiong, X. H.; Chen, P.; Yu, Q.; Wang, Q.; Wang, R. C.; Chu, H. R. Air@rGO€Fe3O4 microspheres with spongy shells: Self-assembly and microwave absorption performance. J. Mater. Chem. C 2016, 4, 10518–10528.

[181]

He, N.; He, Z. D.; Liu, L.; Lu, Y.; Wang, F. Q.; Wu, W. H.; Tong, G. X. Ni2+ Guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1−x alloy hollow microspheres. Chem. Eng. J. 2020, 381, 122743.

[182]

Cheng, Y.; Cao, J. M.; Li, Y.; Li, Z. Y.; Zhao, H. Q.; Ji, G. B.; Du, Y. W. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 1427–1435.

[183]

Liu, P. B.; Gao, S.; Liu, X. D.; Huang, Y.; He, W. J.; Li, Y. T. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B: Eng. 2020, 192, 107992.

[184]

You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.

[185]

Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503–2509.

[186]

Liu, Y.; Liu, X. X.; Wang, X. J. Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. J. Alloys Compd. 2014, 584, 249–253.

[187]

Ling, A.; Tan, G. G.; Man, Q. K.; Lou, Y. X.; Chen, S. W.; Gu, X. S.; Li, R. W.; Pan, J.; Liu, X. C. Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect. Compos. Part B: Eng. 2019, 171, 214–221.

[188]

Anwar, R. S.; Mao, L. F.; Ning, H. S. Frequency selective surfaces: A review. Appl. Sci. 2018, 8, 1689.

[189]

Chen, W. Q.; Xiao, P. S.; Chen, H. H.; Zhang, H. T.; Zhang, Q. C.; Chen, Y. S. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv. Mater. 2019, 31, 1802403.

[190]

Kong, L.; Yin, X. W.; Xu, H. L.; Yuan, X. Y.; Wang, T.; Xu, Z. W.; Huang, J. F.; Yang, R.; Fan, H. Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 2019, 145, 61–66.

[191]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

[192]

Wang, S. S.; Zhao, Y.; Gao, M. M.; Xue, H. L.; Xu, Y. C.; Feng, C. H.; Shi, D. X.; Liu, K. H.; Jiao, Q. Z. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances. ACS Appl. Mater. Interfaces 2018, 10, 42865–42874.

[193]

Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

[194]

Zhang, Z. W.; Cai, Z. H.; Xia, L.; Zhao, D.; Fan, F.; Huang, Y. Synergistically assembled cobalt-telluride/graphene foam with high-performance electromagnetic wave absorption in both gigahertz and terahertz band ranges. ACS Appl. Mater. Interfaces 2021, 13, 30967–30979.

[195]

Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 2021, 604, 402–414.

[196]

Guo, C.; Itoh, K.; Sun, D. M.; Kondo, Y.; Fuji, M. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding. ACS Appl. Nano Mater. 2020, 3, 5944–5954.

[197]

Aslam, M. A.; Ding, W.; ur Rehman, S.; Hassan, A.; Bian, Y. C.; Liu, Q. C.; Sheng, Z. G. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl. Surf. Sci. 2021, 543, 148785.

[198]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[199]

Xi, J. B.; Liu, Y. J.; Wu, Y.; Hu, J. H.; Gao, W. W.; Zhou, E. Z.; Chen, H. H.; Chen, Z. C.; Chen, Y. S.; Gao, C. Multifunctional bicontinuous composite foams with ultralow percolation thresholds. ACS Appl. Mater. Interfaces 2018, 10, 20806–20815.

[200]

Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.

[201]

Jiao, Z. B.; Huyan, W. J.; Yang, F.; Yao, J. R.; Tan, R. Y.; Chen, P.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 2022, 14, 173.

[202]

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

[203]

Huang, Z. Y.; Chen, H. H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P. S.; Liang, J. J.; Zhang, T. F.; Shi, Q. et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

[204]

Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Ma, W. L.; Zhang, T. F.; Wu, M. M.; Xu, S. T.; Fan, F. et al. Consecutively strong absorption from gigahertz to terahertz bands of a monolithic three-dimensional Fe3O4/graphene material. ACS Appl. Mater. Interfaces 2019, 11, 1274–1282.

[205]

Yang, X.; Duan, Y. P.; Li, S. Q.; Huang, L. X.; Pang, H. F.; Ma, B.; Wang, T. M. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 2022, 188, 376–384.

[206]

Wang, Y. Y.; Sun, W. J.; Dai, K.; Yan, D. X.; Li, Z. M. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 2021, 212, 108848.

[207]

Wu, F.; Li, Y.; Lan, X. Q.; Huang, P. K.; Chong, Y. K.; Luo, H. B.; Shen, B.; Zheng, W. G. Large-scale fabrication of lightweight, tough polypropylene/carbon black composite foams as broadband microwave absorbers. Compos. Commun. 2020, 20, 100358.

[208]

Li, W. C.; Li, C. S.; Lin, L. H.; Wang, Y.; Zhang, J. S. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material. J. Alloys Compd. 2019, 781, 883–891.

[209]

Li, X. M.; Zhou, G. Y.; Yang, Q.; Zhu, X. T.; Ren, G. N.; Liu, L. Preparation and performance of electromagnetic wave absorbing foamed ceramics with high closed porosity and gradient SiC distribution. Ceram. Int. 2020, 46, 2294–2299.

[210]

Li, W. C.; Lin, L. H.; Li, C. S.; Wang, Y.; Zhang, J. S. Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal. Results Phys. 2019, 12, 278–286.

[211]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

[212]

Sun, H. D.; Zhang, Y.; Wu, Y.; Zhao, Y.; Zhou, M.; Liu, L.; Tang, S. L.; Ji, G. B. Broadband absorption of macro pyramid structure based flame retardant absorbers. J. Mater. Sci. Technol. 2022, 128, 228–238.

[213]

Huang, Q. Q.; Wang, G. H.; Zhou, M.; Zheng, J.; Tang, S. L.; Ji, G. B. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J. Mater. Sci. Technol. 2022, 108, 90–101.

[214]

Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Computation of radar absorbing silicon carbide foams and their silica matrix composites. Comput. Mater. Sci. 2007, 38, 857–864.

[215]

Liu, Q. L.; Cao, B.; Feng, C. L.; Zhang, W.; Zhu, S. M.; Zhang, D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol. 2012, 72, 1632–1636.

[216]

Liu, Y.; He, D. L.; Dubrunfaut, O.; Zhang, A. N.; Zhang, H. L.; Pichon, L.; Bai, J. B. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers. Compos. Sci. Technol. 2020, 200, 108450.

[217]

Yang, X. C.; Jing, M. X.; Shen, X. Q.; Meng, X. F.; Dong, M. D.; Huang, D. Q.; Wang, Y. D. Microwave absorption of sandwich structure based on nanocrystalline SrFe12O19, Ni0.5Zn0.5Fe2O4 and α-Fe hollow microfibers. J. Nanosci. Nanotechnol. 2014, 14, 2419–2424.

[218]

Choi, J.; Jung, H. T. A new triple-layered composite for high-performance broadband microwave absorption. Compos. Struct. 2015, 122, 166–171.

[219]

Wang, T.; Wang, P.; Wang, Y.; Qiao, L. A broadband far-field microwave absorber with a sandwich structure. Mater. Des. 2016, 95, 486–489.

[220]

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

[221]

Jeong, H.; Le, D. H.; Lim, D.; Phon, R.; Lim, S. Reconfigurable metasurfaces for frequency selective absorption. Adv. Opt. Mater. 2020, 8, 1902182.

[222]

Li, W.; Wu, T. L.; Wang, W.; Zhai, P. C.; Guan, J. G. Broadband patterned magnetic microwave absorber. J. Appl. Phys. 2014, 116, 044110.

[223]
Tong, X. C. Functional Metamaterials and Metadevices; Springer: Cham, 2018.
[224]

Li, W. W.; Xu, M. Z.; Xu, H. X.; Wang, X. W.; Huang, W. Metamaterial absorbers: From tunable surface to structural transformation. Adv. Mater. 2022, 34, 2202509.

[225]

Yu, P.; Besteiro, L. V.; Huang, Y. J.; Wu, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Wiederrecht, G. P.; Govorov, A. O.; Wang, Z. M. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995.

[226]

Hannan, S.; Islam, M. T.; Soliman, M. S.; Mohd Sahar, N. B.; Jit Singh, M. S.; Faruque, M. R. I.; Alzamil, A. A Filling-factor engineered, perfect metamaterial absorber for multiple applications at frequencies set by IEEE in C and X bands. J. Mater. Res. Technol. 2022, 19, 934–946.

[227]

Zhang, C.; Cheng, Q.; Yang, J.; Zhao, J.; Cui, T. J. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett. 2017, 110, 143511.

[228]

Pang, Y. Q.; Wang, J. F.; Cheng, Q.; Xia, S.; Zhou, X. Y.; Xu, Z.; Cui, T. J.; Qu, S. B. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 2017, 110, 104103.

[229]

Sun, L. K.; Cheng, H. F.; Zhou, Y. J.; Wang, J. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 675–677.

[230]

Winson, D.; Choudhury, B.; Selvakumar, N.; Barshilia, H.; Nair, R. U. Design and development of a hybrid broadband radar absorber using metamaterial and graphene. IEEE Trans. Antennas Propag. 2019, 67, 5446–5452.

[231]

Panwar, R.; Lee, J. R. Progress in frequency selective surface-based smart electromagnetic structures: A critical review. Aerosp. Sci. Technol. 2017, 66, 216–234.

[232]

Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747.

[233]

Li, W. W.; Chen, M. J.; Zeng, Z. H.; Jin, H.; Pei, Y. M.; Zhang, Z. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization. Compos. Sci. Technol. 2017, 145, 10–14.

[234]

Zhang, Z.; Wang, C. X.; Yang, H. Y.; Wang, P. D.; Chen, M. J.; Lei, H. S.; Fang, D. N. Broadband radar absorbing composites: Spatial scale effect and environmental adaptability. Compos. Sci. Technol. 2020, 197, 108262.

[235]

Shen, Y.; Zhang, J. Q.; Meng, Y. Y.; Wang, Z. L.; Pang, Y. Q.; Wang, J. F.; Ma, H.; Qu, S. B. Merging absorption bands of plasmonic structures via dispersion engineering. Appl. Phys. Lett. 2018, 112, 254103.

[236]

Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

[237]

Zhou, Q.; Yin, X. W.; Ye, F.; Liu, X. F.; Cheng, L. F.; Zhang, L. T. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption. Mater. Des. 2017, 123, 46–53.

[238]

Zhang, C.; Yin, S.; Long, C.; Dong, B. W.; He, D. P.; Cheng, Q. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 2021, 29, 14078–14086.

[239]

Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

[240]

Huang, Y. X.; Song, W. L.; Wang, C. X.; Xu, Y. N.; Wei, W. Y.; Chen, M. J.; Tang, L. Q.; Fang, D. N. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 2018, 162, 206–214.

[241]

Zhou, Q.; Shi, T. T.; Xue, B.; Gu, S. Y.; Ren, W.; Ye, F.; Fan, X. M.; Du, L. F. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial. Compos. Sci. Technol. 2023, 232, 109877.

[242]

Duan, Y. B.; Liang, Q. X.; Yang, Z.; Li, Z. H.; Yin, H. Y.; Cao, Y.; Li, D. C. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater. Des. 2021, 208, 109900.

[243]

Wang, T. T.; Lu, X. F.; Wang, A. A review: 3D printing of microwave absorption ceramics. Int. J. Appl. Ceram. Technol. 2020, 17, 2477–2491.

[244]

Zhou, R.; Wang, Y. S.; Liu, Z. Y.; Pang, Y. Q.; Chen, J. X.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122.

[245]
Wang, J. Q.; Wu, Z.; Xing, Y. Q.; Li, B. J.; Huang, P.; Liu, L. Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube. Small, in press, https://doi.org/10.1002/smll.202207051.
[246]

Yang, R. B.; Yang, J. J.; Lo, S. T. Wideband square spiral metamaterial absorbers based on flaky carbonyl iron/epoxy composites. AIP Adv. 2020, 10, 015141.

[247]

Li, W.; Wu, T. L.; Wang, W.; Guan, J. G.; Zhai, P. C. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers. Appl. Phys. Lett. 2014, 104, 022903.

[248]

Shen, Y.; Zhang, J. Q.; Wang, W. J.; Pang, Y. Q.; Wang, J. F.; Ma, H.; Qu, S. B. Integrating absorber with non-planar plasmonic structure for k-vector matching absorption enhancement. J. Appl. Phys. 2018, 124, 225101.

[249]

Liu, Y.; Zhao, K.; Drew, M. G. B.; Liu, Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 2018, 8, 015223.

[250]

Liu, Y.; Lin, Y. R.; Zhao, K.; Drew, M. G. B.; Liu, Y. Microwave absorption properties of Ag/NiFe2−xCexO4 characterized by an alternative procedure rather than the main stream method using “reflection loss”. Mater. Chem. Phys. 2020, 243, 122615.

[251]

Xie, P. T.; Li, H. Y.; He, B.; Dang, F.; Lin, J.; Fan, R. H.; Hou, C. X.; Liu, H.; Zhang, J. X.; Ma, Y. et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 2018, 6, 8812–8822.

[252]

Nan, C. W.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151.

[253]

Lv, H. L.; Guo, Y. H.; Wu, G. L.; Ji, G. B.; Zhao, Y.; Xu, Z. J. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 2017, 9, 5660–5668.

[254]

Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

[255]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[256]

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

[257]

Green, M.; Liu, Z.; Xiang, P.; Tan, X.; Huang, F.; Liu, L.; Chen, X. Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 2018, 9, 140–148.

[258]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[259]

Jia, Z. R.; Lan, D.; Lin, K. J.; Qin, M.; Kou, K. C.; Wu, G. L.; Wu, H. J. Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 2018, 29, 17122–17136.

[260]

Duan, B. F.; Zhang, J. M.; Wang, G. W.; Wang, P.; Wang, D.; Qiao, L.; Wang, T.; Li, F. S. Microwave absorption properties of easy-plane anisotropy Fe-Si powders with surface modification in the frequency range of 0.1–4 GHz. J. Mater. Sci.: Mater. Electron. 2019, 30, 13810–13819.

[261]

Pang, H.; Duan, Y.; Gao, M.; Huang, L.; Liu, X.; Li, Z. Electromagnetic wave absorption performance of FeCoNiMn0.5Al0.2 high entropy alloys governed by nanocrystal evolution. Mater. Today Nano 2022, 20, 100243.

[262]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-defined core–shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275.

[263]

Chen, Z. M.; Zhang, Y.; Wang, Z. D.; Wu, Y.; Zhao, Y.; Liu, L.; Ji, G. B. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon 2023, 201, 542–548.

[264]

Green, M.; Van Tran, A. T.; Chen, X. B. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv. Mater. Interfaces 2020, 7, 2000658.

[265]

Green, M.; Van Tran, A. T.; Chen, X. B. Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 2020, 199, 108332.

[266]

Green, M.; Van Tran, A. T.; Chen, X. B. Realizing maximum microwave absorption of poly(3, 4-ethylenedioxythiophene) with a data-driven method. ACS Appl. Electron. Mater. 2020, 2, 2937–2944.

[267]

Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Xie, Z. M.; Lv, T.; Liu, Y. Y. Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bimetallic metal-organic framework. Carbon 2021, 178, 320–331.

[268]

Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

[269]

Cheng, Y.; Seow, J. Z. Y.; Zhao, H. Q.; Xu, Z. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

[270]

Chambers, B. A smart radar absorber. Smart Mater. Struct. 1999, 8, 64–72.

[271]

Llorente-Romano, S.; Garca-Lampérez, A.; Sarkar, T. K.; Salazar-Palma, M. An exposition on the choice of the proper S parameters in characterizing devices including transmission lines with complex reference impedances and a general methodology for computing them. IEEE Antennas Propag. Mag. 2013, 55, 94–112.

[272]

Momeni-Nasab, M.; Bidoki, S. M.; Hadizadeh, M.; Movahhedi, M. Fabrication of electromagnetic waves absorbing material by ink-jet printing method. J. Mater. Sci.: Mater. Electron. 2020, 31, 7093–7099.

[273]

Wang, T.; Han, R.; Tan, G. G.; Wei, J. Q.; Qiao, L.; Li, F. S. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 2012, 112, 104903.

[274]

Spain, E.; Venkatanarayanan, A. Review of physical principles of sensing and types of sensing materials. Compr. Mater. Process. 2014, 13, 5–46.

[275]

Wang, H.; Yang, L.; Zhang, X. N.; Ang, M. H. Permittivity, loss factor and Cole–Cole model of acrylic materials for dielectric elastomers. Results Phys. 2021, 29, 104781.

[276]

Ji, J. D.; Huang, Y.; Yin, J. H.; Zhao, X. C.; Cheng, X. W.; He, S. L.; Li, X.; He, J.; Liu, J. P. Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites. ACS Appl. Nano Mater. 2018, 1, 3935–3944.

[277]

Aharoni, A. Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 1991, 69, 7762–7764.

[278]

Wang, H.; Dai, Y. Y.; Gong, W. J.; Geng, D. Y.; Ma, S.; Li, D.; Liu, W.; Zhang, Z. D. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 2013, 102, 223113.

[279]

Xue, J. M.; Yin, X. W.; Ye, F.; Zhang, L. T.; Cheng, L. F. Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram. Int. 2017, 43, 16736–16743.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2023
Revised: 22 February 2023
Accepted: 08 March 2023
Published: 10 May 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771151 and 21931009).

Return