Journal Home > Volume 16 , Issue 7

In solar cells, hybrid halide perovskites operate under constant bias, thus their stability towards electric field-induced degradation is of key importance. Here we report on evidence of previously unidentified electric field-induced transitions and degradation path of CH3NH3PbI3 (MAPbI3) using elemental and phase mapping. Thin films of MAPbI3 were deposited onto 1–2 µm-pitch interdigitated electrodes and subjected to direct current (DC)-polarization. The MAPbI3 layer polarized with < 0.8 V/µm DC electric field undergoes pronounced ion redistribution to methylammonium-rich MAPbI3−y (y < 0.6) and iodine-rich MA1−xPbI3 (x < 0.3) regions. Polarization-induced loss of both methylammonium and iodine provokes degradation of MAPbI3. Using nanofocus grazing-incidence wide-angle X-ray scattering (GIWAXS), we unambiguously showed that the bias voltage induces the transformation of β-MAPbI3 to metastable δ-MAPbI3 polymorph via alignment of polar organic cation with the electric field. This transformation is partially reversible upon field removal. However, once formed, δ-MAPbI3 disrupts the morphology of pristine film and undergoes decomposition to β-MAPbI3 (β-MAPI) and PbI2. With the aforementioned compositional and phase changes, only MA-rich part serves as the charge separation layer, while the I-rich excitation is blocked with the PbI2 barrier serving as holes trapping layer. These observations reveal the intermediate steps in electric-field-driven degradation of halide perovskites and show the role of polar cations in the process, which is instructive for further material design with higher stability metrics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Evidence for polarization-induced phase transformations and degradation in CH3NH3PbI3

Show Author's information Aleksei Yu. Grishko1( )Maria A. Komkova2Ekaterina I. Marchenko3Alexandra V. Chumakova4Alexey B. Tarasov3Eugene A. Goodilin2,3Andrei A. Eliseev1,3( )
Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
European Synchrotron Radiation Facility, F-38042 Grenoble, France

Abstract

In solar cells, hybrid halide perovskites operate under constant bias, thus their stability towards electric field-induced degradation is of key importance. Here we report on evidence of previously unidentified electric field-induced transitions and degradation path of CH3NH3PbI3 (MAPbI3) using elemental and phase mapping. Thin films of MAPbI3 were deposited onto 1–2 µm-pitch interdigitated electrodes and subjected to direct current (DC)-polarization. The MAPbI3 layer polarized with < 0.8 V/µm DC electric field undergoes pronounced ion redistribution to methylammonium-rich MAPbI3−y (y < 0.6) and iodine-rich MA1−xPbI3 (x < 0.3) regions. Polarization-induced loss of both methylammonium and iodine provokes degradation of MAPbI3. Using nanofocus grazing-incidence wide-angle X-ray scattering (GIWAXS), we unambiguously showed that the bias voltage induces the transformation of β-MAPbI3 to metastable δ-MAPbI3 polymorph via alignment of polar organic cation with the electric field. This transformation is partially reversible upon field removal. However, once formed, δ-MAPbI3 disrupts the morphology of pristine film and undergoes decomposition to β-MAPbI3 (β-MAPI) and PbI2. With the aforementioned compositional and phase changes, only MA-rich part serves as the charge separation layer, while the I-rich excitation is blocked with the PbI2 barrier serving as holes trapping layer. These observations reveal the intermediate steps in electric-field-driven degradation of halide perovskites and show the role of polar cations in the process, which is instructive for further material design with higher stability metrics.

Keywords: stability, ionic conductivity, stoichiometry, degradation, electric field, halide perovskites

References(58)

[1]

Fujiwara, H.; Kato, M.; Tamakoshi, M.; Miyadera, T.; Chikamatsu, M. Optical characteristics and operational principles of hybrid perovskite solar cells. Phys. Status Solidi (A) 2018, 215, 1700730.

[2]

Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F. P.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A. et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 2014, 5, 5049.

[3]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[4]

Zakutayev, A.; Caskey, C. M.; Fioretti, A. N.; Ginley, D. S.; Vidal, J.; Stevanovic, V.; Tea, E.; Lany, S. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 2014, 5, 1117–1125.

[5]

Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 2017, 16, 115–120.

[6]

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

[7]

Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 2014, 5, 2501–2505.

[8]

Zhao, Y. X.; Zhu, K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 4175–4186.

[9]

Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem., Int. Ed. 2015, 54, 3240–3248.

[10]

Zou, Y. Q.; Guo, R. J.; Buyruk, A.; Chen, W.; Xiao, T. X.; Yin, S. S.; Jiang, X. Y.; Kreuzer, L. P.; Mu, C.; Ameri, T. et al. Sodium dodecylbenzene sulfonate interface modification of methylammonium lead iodide for surface passivation of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 52643–52651.

[11]

Wang, M.; Wang, H. X.; Li, W.; Hu, X. F.; Sun, K.; Zang, Z. G. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 2019, 7, 26421–26428.

[12]

Hu, X. F.; Wang, H. X.; Wang, M.; Zang, Z. G. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816–825.

[13]

Luan, Y. G.; Wang, F. H.; Zhuang, J.; Lin, T.; Wei, Y. Z.; Chen, N. L.; Zhang, Y. Y.; Wang, F. Y.; Yu, P.; Mao, L. Q. et al. Dual-function interface engineering for efficient perovskite solar cells. EcoMat 2021, 3, e12092.

[14]

Wang, M.; Li, W.; Wang, H. X.; Yang, K.; Hu, X. F.; Sun, K.; Lu, S. R.; Zang, Z. G. Small molecule modulator at the interface for efficient perovskite solar cells with high short-circuit current density and hysteresis free. Adv. Electron. Mater. 2020, 6, 2000604.

[15]
Best Research-Cell Efficiency Chart [Online]. http://www.Nrel.Gov (accessed Oct 13, 2020).
[16]

Zhu, Y. Y.; Shu, L.; Zhang, Q. P.; Zhu, Y. D.; Poddar, S.; Wang, C.; He, Z. B.; Fan, Z. Y. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 2021, 3, e12117.

[17]

Meng, L.; You, J. B.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265.

[18]

Akbulatov, A. F.; Luchkin, S. Y.; Frolova, L. A.; Dremova, N. N.; Gerasimov, K. L.; Zhidkov, I. S.; Anokhin, D. V.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. J. Phys. Chem. Lett. 2017, 8, 1211–1218.

[19]

Udalova, N. N.; Tutantsev, A. S.; Chen, Q.; Kraskov, A.; Goodilin, E. A.; Tarasov, A. B. New features of photochemical decomposition of hybrid lead halide perovskites by laser irradiation. ACS Appl. Mater. Interfaces 2020, 12, 12755–12762.

[20]

Zhou, Y. Y.; Zhao, Y. X. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.

[21]

Cao, F. R.; Zhang, P.; Sun, H. X.; Wang, M.; Li, L. Degradation mechanism and stability improvement of formamidine-based perovskite solar cells under high humidity conditions. Nano Res. 2022, 15, 8955–8961.

[22]

Lv, X.; Chen, G. Y.; Zhu, X.; An, J. K.; Bao, J. C.; Xu, X. X. Ternary phase diagram of all-inorganic perovskite CsPbClaBrbI3−ab nanocrystals. Nano Res. 2022, 15, 7590–7596.

[23]

Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660.

[24]

Lin, Y. Z.; Chen, B.; Fang, Y. J.; Zhao, J. J.; Bao, C. X.; Yu, Z. H.; Deng, Y. H.; Rudd, P. N.; Yan, Y. F.; Yuan, Y. B. et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 2018, 9, 4981.

[25]

Bae, S.; Kim, S.; Lee, S. W.; Cho, K. J.; Park, S.; Lee, S.; Kang, Y.; Lee, H. S.; Kim, D. Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3091–3096.

[26]

Wang, H. X.; Guerrero, A.; Bou, A.; Al-Mayouf, A. M.; Bisquert, J. Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy Environ. Sci. 2019, 12, 2054–2079.

[27]

Chen, H. Y.; Wang, L. Y.; Shen, C.; Zhang, J. H.; Guo, W. L. Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Res. 2021, 14, 1012–1017.

[28]

deQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 2016, 7, 11683.

[29]

Kim, G. Y.; Senocrate, A.; Yang, T. Y.; Gregori, G.; Grätzel, M.; Maier, J. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 2018, 17, 445–449.

[30]

Cheng, Y. H.; Liu, X. X.; Guan, Z. Q.; Li, M. L.; Zeng, Z. X.; Li, H. W.; Tsang, S. W.; Aberle, A. G.; Lin, F. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 2021, 33, 2006170.

[31]

Ruan, S.; Surmiak, M. A.; Ruan, Y. L.; McMeekin, D. P.; Ebendorff-Heidepriem, H.; Cheng, Y. B.; Lu, J. F.; McNeill, C. R. Light induced degradation in mixed-halide perovskites. J. Mater. Chem. C 2019, 7, 9326–9334.

[32]

Gottesman, R.; Gouda, L.; Kalanoor, B. S.; Haltzi, E.; Tirosh, S.; Rosh-Hodesh, E.; Tischler, Y.; Zaban, A.; Quarti, C.; Mosconi, E. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 2015, 6, 2332–2338.

[33]

Ceratti, D. R.; Rakita, Y.; Cremonesi, L.; Tenne, R.; Kalchenko, V.; Elbaum, M.; Oron, D.; Potenza, M. A. C.; Hodes, G.; Cahen, D. Self-healing inside APbBr3 halide perovskite crystals. Adv. Mater. 2018, 30, 1706273.

[34]

Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; De Bastiani, M.; Bowring, A. R.; Martino, N.; Wojciechowski, K. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 2015, 5, 1500962.

[35]

Barbé, J.; Kumar, V.; Newman, M. J.; Lee, H. K. H.; Jain, S. M.; Chen, H.; Charbonneau, C.; Rodenburg, C.; Tsoi, W. C. Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes. Sustain. Energy Fuels 2018, 2, 905–914.

[36]

Leijtens, T.; Kandada, A. R. S.; Eperon, G. E.; Grancini, G.; D’Innocenzo, V.; Ball, J. M.; Stranks, S. D.; Snaith, H. J.; Petrozza, A. Modulating the electron-hole interaction in a hybrid lead halide perovskite with an electric field. J. Am. Chem. Soc. 2015, 137, 15451–15459.

[37]

Li, C.; Guerrero, A.; Huettner, S.; Bisquert, J. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 2018, 9, 5113.

[38]

Futscher, M. H.; Lee, J. M.; McGovern, L.; Muscarella, L. A.; Wang, T. Y.; Haider, M. I.; Fakharuddin, A.; Schmidt-Mende, L.; Ehrler, B. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 2019, 6, 1497–1503.

[39]

Senocrate, A.; Moudrakovski, I.; Kim, G. Y.; Yang, T. Y.; Gregori, G.; Grätzel, M.; Maier, J. The Nature of ion conduction in methylammonium lead iodide: A multimethod approach. Angew. Chem., Int. Ed. 2017, 56, 7755–7759.

[40]

Yuan, Y. B.; Chae, J.; Shao, Y. C.; Wang, Q.; Xiao, Z. G.; Centrone, A.; Huang, J. S. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500615.

[41]

Yuan, Y. B.; Wang, Q.; Shao, Y. C.; Lu, H. D.; Li, T.; Gruverman, A.; Huang, J. S. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 2016, 6, 1501803.

[42]
West, A. R. Solid State Chemistry and its Applications; 2nd ed. John Wiley & Sons: New York, 2014.
[43]

Liu, Y. T.; Collins, L.; Proksch, R.; Kim, S.; Watson, B. R.; Doughty, B.; Calhoun, T. R.; Ahmadi, M.; Ievlev, A. V.; Jesse, S. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 2018, 17, 1013–1019.

[44]

Zhang, L. H.; Zhang, X.; Lu, G. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J. Phys. Chem. Lett. 2020, 11, 2910–2916.

[45]

Flores-Livas, J. A.; Tomerini, D.; Amsler, M.; Boziki, A.; Rothlisberger, U.; Goedecker, S. Emergence of hidden phases of methylammonium lead iodide (CH3NH3PbI3) upon Compression. Phys. Rev. Mater. 2018, 2, 085201.

[46]

Grishko, A. Y.; Petrov, A. A.; Goodilin, E. A.; Tarasov, A. B. Patterned films of a hybrid lead halide perovskite grown using space-confined conversion of metallic lead by reactive polyiodide melts. RSC Adv. 2019, 9, 37079–37081.

[47]

Grishko, A. Y.; Eliseev, A. A.; Goodilin, E. A.; Tarasov, A. B. Measure is treasure: Proper iodine vapor treatment as a new method of morphology improvement of lead-halide perovskite films. Chem. Mater. 2020, 32, 9140–9146.

[48]

Klein, J. R.; Flender, O.; Scholz, M.; Oum, K.; Lenzer, T. Charge carrier dynamics of methylammonium lead iodide: From PbI2-rich to low-dimensional broadly emitting perovskites. Phys. Chem. Chem. Phys. 2016, 18, 10800–10808.

[49]

Khlyabich, P. P.; Loo, Y. L. Crystalline intermediates and their transformation kinetics during the formation of methylammonium lead halide perovskite thin films. Chem. Mater. 2016, 28, 9041–9048.

[50]

Petrov, A. A.; Belich, N. A.; Grishko, A. Y.; Stepanov, N. M.; Dorofeev, S. G.; Maksimov, E. G.; Shevelkov, A. V.; Zakeeruddin, S. M.; Graetzel, M.; Tarasov, A. B. et al. A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts. Mater. Horiz. 2017, 4, 625–632.

[51]

Walsh, A.; Scanlon, D. O.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem., Int. Ed. 2015, 54, 1791–1794.

[52]

Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198.

[53]

Huang, X. F.; Chen, R. H.; Deng, G. C.; Han, F. M.; Ruan, P. P.; Cheng, F. W.; Yin, J.; Wu, B. H.; Zheng, N. F. Methylamine-dimer-induced phase transition toward MAPbI3 films and high-efficiency perovskite solar modules. J. Am. Chem. Soc. 2020, 142, 6149–6157.

[54]

Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 2017, 8, 1278–1282.

[55]

Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S. H.; Correa-Baena, J. P.; Carmona, C. R.; Richardson, G.; Foster, J. M.; De Angelis, F. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 2017, 10, 604–613.

[56]

Krywka, C.; Keckes, J.; Storm, S.; Buffet, A.; Roth, S. V.; Döhrmann, R.; Müller, M. Nanodiffraction at MINAXS (P03) Beamline of PETRA III. J. Phys. :Conf. Ser. 2013, 425, 072021.

[57]

Buffet, A.; Rothkirch, A.; Döhrmann, R.; Körstgens, V.; Abul Kashem, M. M.; Perlich, J.; Herzog, G.; Schwartzkopf, M.; Gehrke, R.; Müller-Buschbaum, P. et al. P03, the microfocus and nanofocus X-Ray scattering (MiNaXS) beamline of the PETRA III storage ring: The microfocus endstation. J. Synchrotron Rad. 2012, 19, 647–653.

[58]

Benecke, G.; Wagermaier, W.; Li, C.; Schwartzkopf, M.; Flucke, G.; Hoerth, R.; Zizak, I.; Burghammer, M.; Metwalli, E.; Müller-Buschbaum, P. et al. A customizable software for fast reduction and analysis of large X-ray scattering data sets: Applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Cryst. 2014, 47, 1797–1803.

File
12274_2023_5652_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 September 2022
Revised: 06 March 2023
Accepted: 08 March 2023
Published: 05 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Authors acknowledge the assistance of Andrei Chumakov and Stephan V. Roth from Deutsches Elektronen-Synchrotron PETRA III (P03 beamline, DESY, Hamburg, Germany), Anton Davydok and Christina Krywka from Helmholtz-Zentrum Hereon (Institute of Materials Physics, Hamburg, Germany) for GIWAXS data acquisition. AYG, EIM, ABT, EAG acknowledge the support of Russian Science Foundation (No. 19-73-30022). EAA acknowledges the support of the Russian Fund for Basic Research project (No. 18-29-19105) in part of nanofocus GIWAXS methodology development. The authors are thankful to the M.V. Lomonosov Moscow State University Program of Development and DESY research centre (PETRA III synchrotron) for the instrumental support of research studies.

Return