AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes

Xiaohan Tang1,2Fei Xie2( )Yaxiang Lu2,3,4( )Zhao Chen2,5Xiangfei Li5Hong Li2,3,4,5Xuejie Huang2,3,4,5Liquan Chen2,3,4,5Yuanjiang Pan1( )Yong-Sheng Hu2,3,4,5( )
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China
College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

The different types of functional groups in carbon precursors directly affect the cross-linking process during carbonization, which then determine the microstructures and performance in Na-ion batteries.

Abstract

The oxygen-containing functional groups in disordered carbon anodes have been widely reported to influence the Na storage performance. However, the effect of original oxygen-containing groups in the precursors on the final structures and electrochemical performance is rarely studied. Herein, we used the anthraquinone derivatives with different oxygen-containing functional groups as precursors to make the disordered carbon anodes for Na-ion batteries (NIBs). Through comprehensive structural and electrochemical analyses, we found that the different types of functional groups in carbon precursors directly affect the cross-linking process during carbonization. The original precursors containing enough inter-chain oxygen or oxygen-containing functional groups with unsaturated bonds unattached to the ring are beneficial for the oxygen atoms to remain or cross-link in structure to result in more C–O–C group, forming nanovoids and disordered structure, which then determine the high performance of the carbon anodes in NIBs. This work highlights the importance of the type/content of functional groups in precursor and provides guidance for the future design of carbon anodes in NIBs from the perspective of precursor selection.

Electronic Supplementary Material

Download File(s)
12274_2023_5643_MOESM1_ESM.pdf (5.3 MB)

References

[1]

Wang, P. F.; Yao, H. R.; Liu, X. Y.; Yin, Y. X.; Zhang, J. N.; Wen, Y. R.; Yu, X. Q.; Gu, L.; Guo, Y. G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018.

[2]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[3]

Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

[4]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[5]

Park, H.; Kwon, J.; Choi, H.; Song, T.; Paik, U. Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na+ ion uptake. Sci. Adv. 2017, 3, e1700509.

[6]

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

[7]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[8]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[9]

Sun, J. H.; Sadd, M.; Edenborg, P.; Grönbeck, H.; Thiesen, P. H.; Xia, Z. Y.; Quintano, V.; Qiu, R.; Matic, A.; Palermo, V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv. 2021, 7, eabf0812.

[10]

Xie, F.; Xu, Z.; Guo, Z. Y.; Lu, Y. X.; Chen, L. Q.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries—Quo vadis. Sci. China Chem. 2021, 64, 1679–1692.

[11]

Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2020, 11, 2002704.

[12]

Zhang, L. P.; Wang, W.; Lu, S. F.; Xiang, Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 2021, 11, 2003640.

[13]

Sarkar, S.; Roy, S.; Hou, Y. L.; Sun, S. H.; Zhang, J. J.; Zhao, Y. F. Recent progress in amorphous carbon-based materials for anodes of sodium-ion batteries: Synthesis strategies, mechanisms, and performance. ChemSusChem 2021, 14, 3693–3723.

[14]

Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

[15]

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

[16]

Pei, Z. X.; Meng, Q. Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Y. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater. 2020, 28, 55–63.

[17]

Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of structure and performance of hard carbons as anodes for sodium ion batteries. Chem. Mater. 2019, 31, 7288–7299.

[18]

Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

[19]

Wang, X. K.; Shi, J.; Mi, L. W.; Zhai, Y. P.; Zhang, J. Y.; Feng, X. M.; Wu, Z. J.; Chen, W. H. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020, 39, 1053–1062.

[20]

Zhang, J. Y.; Gai, J. J.; Song, K. M.; Chen, W. H. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep. Phys. Sci. 2022, 3, 100868.

[21]

Jiang, K. R.; Tan, X. H.; Zhai, S. L.; Cadien, K.; Li, Z. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. 2021, 14, 4664–4673.

[22]

Li, Y. M.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 2, 139–145.

[23]

Dahbi, M.; Kiso, M.; Kubota, K.; Horiba, T.; Chafik, T.; Hida, K.; Matsuyama, T.; Komaba, S. Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 2017, 5, 9917–9928.

[24]

Lu, P. R.; Xia, J. L.; Dong, X. L. Rapid sodium-ion storage in hard carbon anode material derived from ganoderma lucidum residue with inherent open channels. ACS Sustainable Chem. Eng. 2019, 7, 14841–14847.

[25]

Xiao, L. F.; Lu, H. Y.; Fang, Y. J.; Sushko, M. L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.; Liu, J. Low-defect and low-porosity hard carbon with high Coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238.

[26]

Zhang, F.; Yao, Y. G.; Wan, J. Y.; Henderson, D.; Zhang, X. G.; Hu, L. B. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 391–397.

[27]
Song, P.; Wei, S. Q.; Di, J.; Du, J.; Xu, W. J.; Liu, D. B.; Wang, C. D.; Qiao, S. C.; Cao, Y. Y.; Cui, Q. L. et al. Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5154-0.
[28]

Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.

[29]

Xie, F.; Niu, Y. S.; Zhang, Q. Q.; Guo, Z. Y.; Hu, Z. L.; Zhou, Q.; Xu, Z.; Li, Y. Q.; Yan, R. T.; Lu, Y. X. et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202116394.

[30]

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

[31]

Zhang, H.; Zhang, G. H.; Li, Z. Q.; Qu, K.; Shi, H. M.; Zhang, Q. F.; Duan, H. G.; Jiang, J. H. Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res. 2018, 11, 3791–3801.

[32]

Li, Q.; Zhu, Y. Y.; Zhao, P. Y.; Yuan, C.; Chen, M. M.; Wang, C. Y. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 2018, 129, 85–94.

[33]

Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2022, 15, 2023–2029.

[34]

Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon–electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

[35]

Chen, W. M.; Chen, C. J.; Xiong, X. Q.; Hu, P.; Hao, Z. X.; Huang, Y. H. Coordination of surface-induced reaction and intercalation: Toward a high-performance carbon anode for sodium-ion batteries. Adv. Sci. 2017, 4, 1600500.

[36]

Olsson, E.; Cottom, J.; Au, H.; Titirici, M. M.; Cai, Q. Investigating the effect of edge and basal plane surface functionalisation of carbonaceous anodes for alkali metal (Li/Na/K) ion batteries. Carbon 2021, 177, 226–243.

[37]

Shao, W. L.; Hu, F. Y.; Zhang, T. P.; Liu, S. Y.; Song, C.; Li, N.; Weng, Z. H.; Wang, J. Y.; Jian, X. G. Engineering ultramicroporous carbon with abundant C=O as extended “slope-dominated” sodium ion battery anodes. ACS Sustainable Chem. Eng. 2021, 9, 9727–9739.

[38]

Chen, C.; Huang, Y.; Zhu, Y. D.; Zhang, Z.; Guang, Z. X.; Meng, Z. Y.; Liu, P. B. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS Sustainable Chem. Eng. 2020, 8, 1497–1506.

[39]

Kang, Y. J.; Jung, S. C.; Choi, J. W.; Han, Y. K. Important role of functional groups for sodium ion intercalation in expanded graphite. Chem. Mater. 2015, 27, 5402–5406.

[40]

Song, M. X.; Yi, Z. L.; Xu, R.; Chen, J. P.; Cheng, J. Y.; Wang, Z. F.; Liu, Q. L.; Guo, Q. G.; Xie, L. J.; Chen, C. M. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Mater. 2022, 51, 620–629.

[41]

Zhao, H. Q.; Ye, J. Q.; Song, W.; Zhao, D.; Kang, M. M.; Shen, H. T.; Li, Z. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon. ACS Appl. Mater. Interfaces 2020, 12, 6991–7000.

[42]

Wang, H.; Sun, F.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Pi, X. X.; Gao, J. H.; Zhao, G. B. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage. ACS Sustainable Chem. Eng. 2019, 7, 18554–18565.

[43]

Xie, H. J.; Wu, Z. L.; Wang, Z. Y.; Qin, N.; Li, Y. Z.; Cao, Y. L.; Lu, Z. G. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 3606–3612.

[44]

Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial Coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

[45]

Xia, J. L.; Yan, D.; Guo, L. P.; Dong, X. L.; Li, W. C.; Lu, A. H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 2020, 32, 2000447.

[46]

Zhang, S. W.; Lv, W.; Luo, C.; You, C. H.; Zhang, J.; Pan, Z. Z.; Kang, F. Y.; Yang, Q. H. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 3, 18–23.

[47]

Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

[48]

Zhang, G. F.; Zhao, Y. B.; Yan, L.; Zhang, L. J.; Shi, Z. Q. Sycamore fruit seed-based hard carbon anode material with high cycle stability for sodium-ion battery. J. Mater. Sci.: Mater. Electron. 2021, 32, 5645–5654.

[49]

Li, Y. Q.; Lu, Y. X.; Meng, Q. S.; Jensen, A. C. S.; Zhang, Q. Q.; Zhang, Q. H.; Tong, Y. X.; Qi, Y. R.; Gu, L.; Titirici, M. M. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019, 9, 1902852.

[50]

Zhou, C. L.; Li, A.; Cao, B.; Chen, X. H.; Jia, M. Q.; Song, H. H. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1447–A1454.

Nano Research
Pages 12579-12586
Cite this article:
Tang X, Xie F, Lu Y, et al. Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Research, 2023, 16(11): 12579-12586. https://doi.org/10.1007/s12274-023-5643-9
Topics:

1152

Views

34

Crossref

33

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 01 February 2023
Revised: 01 March 2023
Accepted: 06 March 2023
Published: 25 March 2023
© Tsinghua University Press 2023
Return