Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This work focuses on the fabrication and characterization of Chemical Field-Effect Transistor (ChemFET) gas nanosensor arrays based on single nanowire (SNW). The fabrication processes include micro and nanofabrication techniques enabled by a combination of ultraviolet (UV) and e-beam lithography to build the ChemFET structure. Results show the integration and connection of SNWs across the multiple pairs of nanoelectrodes in the ChemFET by dielectrophoresis process (DEP) thanks to the incorporation of alignment windows (200–300 nm) adapted to the diameter of the NWs. Measurements of the SNW ChemFET array's output and transfer characteristics prove the influence of gate bias on the drain current regulation. Tests upon hydrogen (H2) and nitrogen dioxide (NO2) as analyte models of reducing and oxidizing gases show the ChemFET sensing functionality. Moreover, results demonstrate better response characteristics to H2 when the ChemFET operates in the subthreshold regime. The design concepts and methods proposed for fabricating the SNW-based ChemFET arrays are versatile, reproducible, and most likely adaptable to other systems where SNW arrays are required.
Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuat. B Chem. 2014, 204, 250–272.
Liu, L.; Wang, Y. Y.; Liu, Y. H.; Wang, S. Q.; Li, T.; Feng, S. M.; Qin, S. J.; Zhang, T. Heteronanostructural metal oxide-based gas microsensors. Microsyst. Nanoeng. 2022, 8, 85.
Gurlo, A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154–165.
Gao, W. Y.; Zdrachek, E.; Xie, X. J.; Bakker, E. A solid-state reference electrode based on a self-referencing pulstrode. Angew. Chem., Int. Ed. 2020, 132, 2314–2318.
Zhai, J. Y.; Yuan, D. J.; Xie, X. J. Ionophore-based ion-selective electrodes: Signal transduction and amplification from potentiometry. Sens. Diagn. 2022, 1, 213–221.
Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448.
Chartuprayoon, N.; Zhang, M. L.; Bosze, W.; Choa, Y. H.; Myung, N. V. One-dimensional nanostructures based bio-detection. Biosens. Bioelectron. 2015, 63, 432–443.
Lu, Z. C.; Zhou, H.; Wang, Y.; Liu, Y. X.; Li, T. A controllable fabrication improved silicon nanowire array sensor on (111) SOI for accurate bio-analysis application. Nano Res. 2022, 15, 7468–7475.
Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287–3292.
Chmela, O.; Sadílek, J.; Domènech-Gil, G.; Samà, J.; Somer, J.; Mohan, R.; Romano-Rodriguez, A.; Hubálek, J.; Vallejos, S. Selectively arranged single-wire based nanosensor array systems for gas monitoring. Nanoscale 2018, 10, 9087–9096.
Vallejos, S.; Grácia, I.; Chmela, O.; Figueras, E.; Hubálek, J.; Cané, C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuat. B Chem. 2016, 235, 525–534.
Brunet, E.; Maier, T.; Mutinati, G. C.; Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W. Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuat. B Chem. 2012, 165, 110–118.
Chen, X. P.; Wong, C. K. Y.; Yuan, C. A.; Zhang, G. Q. Nanowire-based gas sensors. Sens. Actuat. B Chem. 2013, 177, 178–195.
Penner, R. M. Chemical sensing with nanowires. Annu. Rev. Anal. Chem. 2012, 5, 461–485.
Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722.
Hernández-Ramírez, F.; Tarancón, A.; Casals, O.; Rodríguez, J.; Romano-Rodríguez, A.; Morante, J. R.; Barth, S.; Mathur, S.; Choi, T. Y.; Poulikakos, D. et al. Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology 2006, 17, 5577–5583.
Domènech-Gil, G.; Barth, S.; Samà, J.; Pellegrino, P.; Gràcia, I.; Cané, C.; Romano-Rodriguez, A. Gas sensors based on individual indium oxide nanowire. Sens. Actuat. B Chem. 2017, 238, 447–454.
Wang, M. C. P.; Gates, B. D. Directed assembly of nanowires. Mater. Today 2009, 12, 34–43.
Burg, B. R.; Poulikakos, D. Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review. J. Mater. Res. 2011, 26, 2123.
Smith, B. D.; Mayer, T. S.; Keating, C. D. Deterministic assembly of functional nanostructures using nonuniform electric fields. Annu. Rev. Phys. Chem. 2012, 63, 241–263.
Raychaudhuri, S.; Dayeh, S. A.; Wang, D. L.; Yu, E. T. Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 2009, 9, 2260–2266.
Maijenburg, A. W.; Maas, M. G.; Rodijk, E. J. B.; Ahmed, W.; Kooij, E. S.; Carlen, E. T.; Blank, D. H. A.; Ten Elshof, J. E. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes. J. Colloid Interface Sci. 2011, 355, 486–493.
Vallejos, S.; Gràcia, I.; Figueras, E.; Cané, C. Catalyst-free vapor-phase method for direct integration of gas sensing nanostructures with polymeric transducing platforms. J. Nanomater. 2014, 2014, 932129.
Vallejos, S.; Pizúrová, N.; Čechal, J.; Gràcia, I.; Cané, C. Aerosol-assisted chemical vapor deposition of metal oxide structures: Zinc oxide rods. J. Vis. Exp. 2017, 127, 56127.
Vallejos, S.; Umek, P.; Stoycheva, T.; Annanouch, F.; Llobet, E.; Correig, X.; De Marco, P.; Bittencourt, C.; Blackman, C. Single-step deposition of au- and pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 2013, 23, 1313–1322.
Navío, C.; Vallejos, S.; Stoycheva, T.; Llobet, E.; Correig, X.; Snyders, R.; Blackman, C.; Umek, P.; Ke, X. X.; Van Tendeloo, G. et al. Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies. Mater. Chem. Phys. 2012, 134, 809–813.
Xu, D. D.; Subramanian, A.; Dong, L. X.; Nelson, B. J. Shaping nanoelectrodes for high-precision dielectrophoretic assembly of carbon nanotubes. IEEE Trans. Nanotechnol. 2009, 8, 449–456.
Montemurro, D.; Stornaiuolo, D.; Massarotti, D.; Ercolani, D.; Sorba, L.; Beltram, F.; Tafuri, F.; Roddaro, S. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis. Nanotechnology 2015, 26, 385302.
Huo, J. P.; Zou, G. S.; Lin, L. C.; Wang, K. H.; Xing, S. L.; Zhao, G. L.; Liu, L.; Zhou, Y. N. Highly focused femtosecond laser directed selective boron doping in single SiC nanowire device for n-p conversion. Appl. Phys. Lett. 2019, 115, 133104.
Jakhar, A.; Dhyani, V.; Das, S. Room temperature terahertz detector based on single silicon nanowire junctionless transistor with high detectivity. Semicond. Sci. Technol. 2020, 35, 125020.
Han, J. W.; Rim, T.; Baek, C. K.; Meyyappan, M. Chemical gated field effect transistor by hybrid integration of one-dimensional silicon nanowire and two-dimensional tin oxide thin film for low power gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 21263–21269.
Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 2004, 4, 403–407.
Feng, P.; Shao, F.; Shi, Y.; Wan, Q. Gas sensors based on semiconducting nanowire field-effect transistors. Sensors (Basel) 2014, 14, 17406–17429.
Zhou, X. Y.; Wang, Y.; Wang, J. X.; Xie, Z.; Wu, X. F.; Han, N.; Chen, Y. F. Amplifying the signal of metal oxide gas sensors for low concentration gas detection. IEEE Sens. J. 2017, 17, 2841–2847.
Tonezzer, M. Selective gas sensor based on one single SnO2 nanowire. Sens. Actuat. B Chem. 2019, 288, 53–59.
Thai, N. X.; Van Duy, N.; Hung, C. M.; Nguyen, H.; Tonezzer, M.; Van Hieu, N.; Hoa, N. D. Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases. J. Sci. Adv. Mater. Dev. 2020, 5, 409–416.
Afshar, M.; Preiß, E. M.; Sauerwald, T.; Rodner, M.; Feili, D.; Straub, M.; König, K.; Schütze, A.; Seidel, H. Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching. Sens. Actuat. B Chem. 2015, 215, 525–535.
Chen, X. X.; Shen, Y. B.; Zhang, W.; Zhang, J.; Wei, D. Z.; Lu, R.; Zhu, L. J.; Li, H. S.; Shen, Y. S. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor. Appl. Surf. Sci. 2018, 435, 1096–1104.
Ahn, J. H.; Yun, J.; Choi, Y. K.; Park, I. Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection. Appl. Phys. Lett. 2014, 104, 013508.
Kim, D.; Park, C.; Choi, W.; Shin, S. H.; Jin, B.; Baek, R. H.; Lee, J. S. Improved long-term responses of Au-decorated Si nanowire FET sensor for NH3 detection. IEEE Sens. J. 2020, 20, 2270–2277.
804
Views
188
Downloads
2
Crossref
2
Web of Science
2
Scopus
0
CSCD
Altmetrics
Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.