Journal Home > Volume 16 , Issue 7

Electrocatalysis is becoming more and more important in energy conversion and storage due to rising energy demands, increasing carbon dioxide emissions, and impending climate change. The design and synthesis of high-performance electrocatalysts are the spotlights of electrocatalysis. Among many design methodologies reported, strain engineering has gained growing attention because it can change the atomic arrangement and lattice structure of electrocatalysts. However, strain engineering remains to be problematic in regulating the properties of electrocatalysts. This review discusses the strain effect tactics to regulate metal and non-metal electrocatalysts, including three sections focusing on strain categorization, strain regulation mechanism, and applications in electrocatalysis, respectively. Finally, the current challenges and an outlook of strain engineering are discussed.


menu
Abstract
Full text
Outline
About this article

Opportunities and challenges of strain engineering for advanced electrocatalyst design

Show Author's information Qing-Man Liang,§Xinchang Wang,§Xin-Wang Wan,§Long-Xing LinBi-Jun GengZhong-Qun TianYang Yang( )
Department of Physics, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China

§ Qing-Man Liang, Xinchang Wang, and Xin-Wang Wan contributed equally to this work.

Abstract

Electrocatalysis is becoming more and more important in energy conversion and storage due to rising energy demands, increasing carbon dioxide emissions, and impending climate change. The design and synthesis of high-performance electrocatalysts are the spotlights of electrocatalysis. Among many design methodologies reported, strain engineering has gained growing attention because it can change the atomic arrangement and lattice structure of electrocatalysts. However, strain engineering remains to be problematic in regulating the properties of electrocatalysts. This review discusses the strain effect tactics to regulate metal and non-metal electrocatalysts, including three sections focusing on strain categorization, strain regulation mechanism, and applications in electrocatalysis, respectively. Finally, the current challenges and an outlook of strain engineering are discussed.

Keywords: electrocatalysis, strain engineering, electrocatalyst design, categorization and mechanism, applications in electrocatalysis

References(110)

[1]

Weng, W.; Jiang, B. M.; Wang, Z.; Xiao, W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci. Adv. 2020, 6, eaay9278.

[2]

Demski, C.; Poortinga, W.; Whitmarsh, L.; Böhm, G.; Fisher, S.; Steg, L.; Umit, R.; Jokinen, P.; Pohjolainen, P. National context is a key determinant of energy security concerns across europe. Nat. Energy 2018, 3, 882–888.

[3]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[4]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[5]

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

[6]

Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

[7]

Fu, G. D.; Kang, X. M.; Zhang, Y.; Yang, X. Q.; Wang, L.; Fu, X. Z.; Zhang, J. J.; Luo, J. L.; Liu, J. W. Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nanomicro Lett. 2022, 14, 200.

[8]

Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

[9]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[10]

Huang, X. Y.; Li, L. H.; Zhao, S. F.; Tong, L.; Li, Z.; Peng, Z. R.; Lin, R. F.; Zhou, L.; Peng, C.; Xue, K. H. et al. MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nanomicro Lett. 2022, 14, 174.

[11]

Wang, G. J.; Sun, Y. Z.; Zhao, Y. D.; Zhang, Y.; Li, X. H.; Fan, L. Z.; Li, Y. C. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Res. 2022, 15, 8771–8782.

[12]

Liu, G. G.; Zhou, W.; Ji, Y. R.; Chen, B.; Fu, G. T.; Yun, Q. B.; Chen, S. M.; Lin, Y. X.; Yin, P. F.; Cui, X. Y. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270.

[13]

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

[14]

Kao, C. R.; Yeh, A. H.; Chen, B. H.; Lyu, L. M.; Chuang, Y. C.; Sneed, B. T.; Kuo, C. H. Insights into transformation of icosahedral PdRu nanocrystals into lattice-expanded nanoframes with strain enhancement in electrochemical redox reactions. Chem. Mater. 2022, 34, 2282–2291.

[15]

Guo, X. L.; Zheng, T. X.; Ji, G. P.; Hu, N.; Xu, C. H.; Zhang, Y. X. Core/shell design of efficient electrocatalysts based on NiCo2O4 nanowires and NiMn LDH nanosheets for rechargeable zinc-air batteries. J. Mater. Chem. A 2018, 6, 10243–10252.

[16]

Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

[17]

Shen, C. Q.; Wang, P. T.; Li, L. G.; Huang, X. Q.; Shao, Q. Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Res. 2022, 15, 528–534.

[18]

Jansonius, R. P.; Schauer, P. A.; Dvorak, D. J.; MacLeod, B. P.; Fork, D. K.; Berlinguette, C. P. Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem., Int. Ed. 2020, 59, 12192–12198.

[19]

Yan, K.; Kim, S. K.; Khorshidi, A.; Guduru, P. R.; Peterson, A. A. High elastic strain directly tunes the hydrogen evolution reaction on tungsten carbide. J. Phys. Chem. C 2017, 121, 6177–6183.

[20]

Zeng, B. F.; Wei, J. Y.; Zhang, X. G.; Liang, Q. M.; Hu, S.; Wang, G.; Lei, Z. C.; Zhao, S. Q.; Zhang, H. W.; Shi, J. et al. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem. Sci. 2022, 13, 7765–7772.

[21]

Muralidharan, N.; Brock, C. N.; Cohn, A. P.; Schauben, D.; Carter, R. E.; Oakes, L.; Walker, D. G.; Pint, C. L. Tunable mechanochemistry of lithium battery electrodes. ACS Nano 2017, 11, 6243–6251.

[22]

Deng, Q. B.; Gopal, V.; Weissmüller, J. Less noble or more noble: How strain affects the binding of oxygen on gold. Angew. Chem., Int. Ed. 2015, 54, 12981–12985.

[23]

Wang, Y. X.; Yao, S. K.; Liao, P. L.; Jin, S. Y.; Wang, Q. X.; Kim, M. J.; Cheng, G. J.; Wu, W. Z. Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 2020, 32, e2002342.

[24]

Zeng, B. F.; Zou, Y. L.; Wang, G.; Hong, W. J.; Tian, Z. Q.; Yang, Y. Quantitative studies of single-molecule chemistry using conductance measurement. Nano Today 2022, 47, 101660.

[25]

Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698–1703.

[26]

Yan, K.; Maark, T. A.; Khorshidi, A.; Sethuraman, V. A.; Peterson, A. A.; Guduru, P. R. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 6175–6181.

[27]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[28]

Adit Maark, T.; Peterson, A. A. Understanding strain and ligand effects in hydrogen evolution over Pd (111) surfaces. J. Phys. Chem. C 2014, 118, 4275–4281.

[29]

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

[30]

Qiao, W.; Xu, W.; Xu, X. Y.; Wu, L. Q.; Yan, S. M.; Wang, D. H. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 2315–2322.

[31]

Zou, Y. L.; Liang, Q. M.; Lu, T. G.; Li, Y. G.; Zhao, S. Q.; Gao, J.; Yang, Z. X.; Feng, A. N.; Shi, J.; Hong, W. J. et al. A van der Waals heterojunction strategy to fabricate layer-by-layer single-molecule switch. Sci. Adv. 2023, 9, eadf0425.

[32]
Zeng, B. F.; Deng, R.; Zou, Y. L.; Huo, C. A.; Wang, J. Y.; Yang, W. M.; Liang, Q. M.; Qiu, S. J.; Feng, A. N.; Shi, J. et al. Optical trapping of a single molecule of length sub-1 nm in solution. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202202318.
[33]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17509.

[34]

Sneed, B. T.; Young, A. P.; Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 2015, 7, 12248–12265.

[35]

Li, G. Q.; Chen, Z. H.; Li, Y. F.; Zhang, D.; Yang, W. T.; Liu, Y. Y.; Cao, L. Y. Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt. ACS Nano 2020, 14, 1707–1714.

[36]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[37]

Wang, A. Q.; Zhao, Z. L.; Hu, D.; Niu, J. F.; Zhang, M.; Yan, K.; Lu, G. Tuning the oxygen evolution reaction on a nickel-iron alloy via active straining. Nanoscale 2019, 11, 426–430.

[38]

Yang, Y. Y.; Maark, T. A.; Peterson, A.; Kumar, S. Elastic strain effects on catalysis of a PdCuSi metallic glass thin film. Phys. Chem. Chem. Phys. 2015, 17, 1746–1754.

[39]

Sethuraman, V. A.; Vairavapandian, D.; Lafouresse, M. C.; Adit Maark, T.; Karan, N.; Sun, S. H.; Bertocci, U.; Peterson, A. A.; Stafford, G. R.; Guduru, P. R. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt. J. Phys. Chem. C 2015, 119, 19042–19052.

[40]

Du, M. S.; Cui, L. S.; Cao, Y.; Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 2015, 137, 7397–7403.

[41]

Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

[42]

Zhang, J. M.; Xu, W. C.; Liu, Y.; Hung, S. F.; Liu, W.; Lam, Z.; Tao, H. B.; Yang, H. B.; Cai, W. Z.; Xiao, H. et al. In situ precise tuning of bimetallic electronic effect for boosting oxygen reduction catalysis. Nano Lett. 2021, 21, 7753–7760.

[43]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

[44]

Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.

[45]

Chattot, R.; Martens, I.; Mirolo, M.; Ronovsky, M.; Russello, F.; Isern, H.; Braesch, G.; Hornberger, E.; Strasser, P.; Sibert, E. et al. Electrochemical strain dynamics in noble metal nanocatalysts. J. Am. Chem. Soc. 2021, 143, 17068–17078.

[46]

Yuan, A. T.; Zhang, H. X.; Deng, Q. B. A simple mechanical method to modulate the electrochemical electrosorption processes at metal surfaces. Molecules 2019, 24, 3662.

[47]

Deng, Q. B.; Smetanin, M.; Weissmüller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 2014, 309, 351–361.

[48]

Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

[49]

Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

[50]

Wang, C. Y.; Sang, X. H.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 2017, 17, 5526–5532.

[51]

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

[52]

Lim, B.; Wang, J. G.; Camargo, P. H. C.; Jiang, M. J.; Kim, M. J.; Xia, Y. N. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Lett. 2008, 8, 2535–2540.

[53]

Jiang, M. J.; Lim, B.; Tao, J.; Camargo, P. H. C.; Ma, C.; Zhu, Y. M.; Xia, Y. N. Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale 2010, 2, 2406–2411.

[54]

Xiao, X. Y.; Jeong, H.; Song, J.; Ahn, J. P.; Kim, J.; Yu, T. Facile synthesis of Pd@Pt core–shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation. Chem. Commun. 2019, 55, 11952–11955.

[55]

Meng, N. N.; Ma, X. M.; Wang, C. H.; Wang, Y. T.; Yang, R.; Shao, J.; Huang, Y. M.; Xu, Y.; Zhang, B.; Yu, Y. Oxide-derived core–shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022, 16, 9095–9104.

[56]

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493–497.

[57]

Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.

[58]

Jiao, L.; Liu, E. S.; Hwang, S.; Mukerjee, S.; Jia, Q. Y. Compressive strain reduces the hydrogen evolution and oxidation reaction activity of platinum in alkaline solution. ACS Catal. 2021, 11, 8165–8173.

[59]

Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

[60]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[61]

Tang, C. Y.; Zhang, N.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 2019, 19, 1336–1342.

[62]

Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

[63]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[64]

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

[65]

Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

[66]

Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

[67]

Muscher, P. K.; Rehn, D. A.; Sood, A.; Lim, K.; Luo, D.; Shen, X. Z.; Zajac, M.; Lu, F. Y.; Mehta, A.; Li, Y. et al. Highly efficient uniaxial in-plane stretching of a 2D material via ion insertion. Adv. Mater. 2021, 33, 2101875.

[68]

Li, Y.; Duerloo, K. A. N.; Reed, E. J. Strain engineering in monolayer materials using patterned adatom adsorption. Nano Lett. 2014, 14, 4299–4305.

[69]

Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

[70]

Huang, Y. Y.; Zhu, Y. C.; Fu, H. Y.; Ou, M. Y.; Hu, C. C.; Yu, S. J.; Hu, Z. W.; Chen, C. T.; Jiang, G.; Gu, H. K. et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V. Angew. Chem., Int. Ed. 2021, 60, 4682–4688.

[71]

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

[72]

Yu, L. P.; Ruzsinszky, A.; Perdew, J. P. Bending two-dimensional materials to control charge localization and Fermi-level shift. Nano Lett. 2016, 16, 2444–2449.

[73]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[74]

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

[75]

Wang, P. C.; Wang, R. Z.; Xu, Q.; Xu, Z. A.; Wan, L.; Lin, Y. Q.; Liu, P. F.; Wang, B. G. Role of the interfacial effect between the substrate and Co(OH)2 layer in electrochemical oxygen evolution. ACS Appl. Energy Mater. 2021, 4, 9487–9497.

[76]

Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

[77]

Wang, J. C.; He, J. J.; Omololu Odunmbaku, G.; Zhao, S.; Gou, Q. Z.; Han, G.; Xu, C. H.; Frauenheim, T.; Li, M. Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chem. Eng. J. 2021, 414, 128811.

[78]

Liang, J. W.; Ma, S. X.; Li, J.; Wang, Y. G.; Wu, J. L.; Zhang, Q.; Liu, Z.; Yang, Z. H.; Qu, K. G.; Cai, W. W. Boosting the acidic electrocatalytic nitrogen reduction performance of MoS2 by strain engineering. J. Mater. Chem. A 2020, 8, 10426–10432.

[79]

Wang, W. Y.; Meng, J.; Hu, Y. J.; Wang, J. J.; Li, Q. X.; Yang, J. L. Thgraphene: A novel two-dimensional carbon allotrope as a potential multifunctional material for electrochemical water splitting and potassium-ion batteries. J. Mater. Chem. A 2022, 10, 9848–9857.

[80]

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[81]

Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

[82]

Wang, Y. X.; Zhang, H. L.; An, P.; Wu, H. S.; Jia, J. F. Effect of potassium on methanol steam reforming on the Cu (111) and Cu (110) surfaces: A DFT study. J. Phys. Chem. C 2021, 125, 20905–20918.

[83]

Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Marković, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 2010, 9, 998–1003.

[84]

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

[85]

Chen, Y. L.; Cheng, T.; Goddard III, W. A. Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J. Am. Chem. Soc. 2020, 142, 8625–8632.

[86]

Han, G. K.; Zhang, X.; Liu, W.; Zhang, Q. H.; Wang, Z. Q.; Cheng, J.; Yao, T.; Gu, L.; Du, C. Y.; Gao, Y. Z. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 2021, 12, 6335.

[87]

Moreno, J.; Aspera, S.; David, M.; Kasai, H. A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon 2015, 94, 936–941.

[88]

Chai, G. L.; Guo, Z. X. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem. Sci. 2016, 7, 1268–1275.

[89]

Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

[90]

Liu, F. Z.; Wu, C.; Yang, S. C. Strain and ligand effects on CO2 reduction reactions over Cu-metal heterostructure catalysts. J. Phys. Chem. C 2017, 121, 22139–22146.

[91]

Adit Maark, T.; Nanda, B. R. K. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures. J. Phys. Chem. C 2017, 121, 4496–4504.

[92]

Schlapka, A.; Lischka, M.; Groß, A.; Käsberger, U.; Jakob, P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001). Phys. Rev. Lett. 2003, 91, 016101.

[93]

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

[94]

Gauthier, Y.; Schmid, M.; Padovani, S.; Lundgren, E.; Buš, V.; Kresse, G.; Redinger, J.; Varga, P. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Phys. Rev. Lett. 2001, 87, 036103.

[95]

Suo, Y. G.; Zhuang, L.; Lu, J. T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem., Int. Ed. 2007, 46, 2862–2864.

[96]

Li, X. L.; Liu, W.; Zhang, M. Y.; Zhong, Y. R.; Weng, Z.; Mi, Y. Y.; Zhou, Y.; Li, M.; Cha, J. J.; Tang, Z. Y. et al. Strong metal-phosphide interactions in core–shell geometry for enhanced electrocatalysis. Nano Lett. 2017, 17, 2057–2063.

[97]

Xue, S. Y.; Chen, G. Y.; Li, F.; Zhao, Y. H.; Zeng, Q. W.; Peng, J. H.; Shi, F. L.; Zhang, W. C.; Wang, Y. Z.; Wu, J. B. et al. Understanding of strain-induced electronic structure changes in metal-based electrocatalysts: Using Pd@Pt core–shell nanocrystals as an ideal platform. Small 2021, 17, e2100559.

[98]

Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21899–21904.

[99]

Zhang, J. G.; Fan, T. T.; Huang, P. P.; Lian, X. Y.; Guo, Y. T.; Chen, Z.; Yi, X. D. Electro-reconstruction-induced strain regulation and synergism of Ag-In-S toward highly efficient CO2 electrolysis to formate. Adv. Funct. Mater. 2022, 32, 2113075.

[100]

Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au (core)-PtIr (shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

[101]

Cheng, C.; Lührs, L. Robust metallic actuators based on nanoporous gold rapidly dealloyed from gold-nickel precursors. Adv. Funct. Mater. 2021, 31, 2107241.

[102]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

[103]

Hou, Z. Q.; Sun, Z.; Cui, C. H.; Zhu, D. M.; Yang, Y. N.; Zhang, T. Ru coordinated ZnIn2S4 triggers local lattice-strain engineering to endow high-efficiency electrocatalyst for advanced Zn-air batteries. Adv. Funct. Mater 2022, 2110572.

[104]

Liu, N. Z.; Wang, R. X.; Gao, S. J.; Zhang, R. F.; Fan, F. R.; Ma, Y. H.; Luo, X. L.; Ding, D.; Wu, W. Z. High-performance piezo-electrocatalytic sensing of ascorbic acid with nanostructured wurtzite zinc oxide. Adv. Mater. 2021, 33, 2105697.

[105]

Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

[106]

Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

[107]

Wu, W. Z.; Niu, C. Y.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew. Chem., Int. Ed. 2019, 58, 2029–2033.

[108]

Lee, J. K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G. T.; Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S. et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494–3500.

[109]

Lee, J. H.; Jang, W. S.; Han, S. W.; Baik, H. K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 2014, 30, 9866–9873.

[110]

Rhuy, D.; Lee, Y.; Kim, J. Y.; Kim, C.; Kwon, Y.; Preston, D. J.; Kim, I. S.; Odom, T. W.; Kang, K.; Lee, D. et al. Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 2022, 22, 5742–5750.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2023
Revised: 25 February 2023
Accepted: 05 March 2023
Published: 25 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. T2222002, 21973079, 22032004, and 21991130) and the Natural Science Foundation of Fujian Province (No. 2021J06008).

Return