Journal Home > Volume 16 , Issue 7

The paper shows the results of the mathematical model development and the numerical simulation of the oxygen vacancies, and the distribution of TiO, Ti2O3, and TiO2 oxides in the titanium oxide nanostructure obtained by local anodic oxidation (anodization). The effect of the anodization voltage pulse duration and amplitude on the titanium oxide composition distribution and the conduction channel formation was shown. Synaptic device prototypes based on electrochemical titanium oxide are fabricated and investigated. It was shown that forming free resistive switching between the low resistances state (LRS) 1.43 ± 0.54 kΩ and the high resistance state (HRS) 28.75 ± 9.75 kΩ were observed during 100,000 switching cycles and LRS 1.49 ± 0.23 kΩ was maintained for 10,000 s. Multilevel resistive switching of the synaptic device prototype was investigated. It was shown that increasing Uset from 0.5 to 1.5 V leads to different LRS from 3.96 ± 0.19 to 0.71 ± 0.10 kΩ. The results obtained can be used in the development of technological foundations for the formation of high-performance multilevel artificial synapses for elements of neuroelectronics and hardware neural networks.


menu
Abstract
Full text
Outline
About this article

Titanium oxide artificial synaptic device: Nanostructure modeling and synthesis, memristive cross-bar fabrication, and resistive switching investigation

Show Author's information Vadim I. Avilov1,2Roman V. Tominov1,2Zakhar E. Vakulov1,2Lev G. Zhavoronkov1,2Vladimir A. Smirnov1,2( )
Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Southern Federal University, Taganrog 347922, Russia
Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia

Abstract

The paper shows the results of the mathematical model development and the numerical simulation of the oxygen vacancies, and the distribution of TiO, Ti2O3, and TiO2 oxides in the titanium oxide nanostructure obtained by local anodic oxidation (anodization). The effect of the anodization voltage pulse duration and amplitude on the titanium oxide composition distribution and the conduction channel formation was shown. Synaptic device prototypes based on electrochemical titanium oxide are fabricated and investigated. It was shown that forming free resistive switching between the low resistances state (LRS) 1.43 ± 0.54 kΩ and the high resistance state (HRS) 28.75 ± 9.75 kΩ were observed during 100,000 switching cycles and LRS 1.49 ± 0.23 kΩ was maintained for 10,000 s. Multilevel resistive switching of the synaptic device prototype was investigated. It was shown that increasing Uset from 0.5 to 1.5 V leads to different LRS from 3.96 ± 0.19 to 0.71 ± 0.10 kΩ. The results obtained can be used in the development of technological foundations for the formation of high-performance multilevel artificial synapses for elements of neuroelectronics and hardware neural networks.

Keywords: artificial intelligence, resistive switching, titanium oxide, scanning probe microscopy, neuromorphic systems, memristive cross bar

References(70)

[1]

Deng, L.; Li, G. Q.; Han, S.; Shi, L. P.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive survey. Proc. IEEE 2020, 108, 485–532.

[2]

Compagnoni, C. M.; Goda, A.; Spinelli, A. S.; Feeley, P.; Lacaita, A. L.; Visconti, A. Reviewing the evolution of the NAND flash technology. Proc. IEEE 2017, 105, 1609–1633.

[3]

Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190061.

[4]

Lobov, S. A.; Zharinov, A. I.; Makarov, V. A.; Kazantsev, V. B. Spatial memory in a spiking neural network with robot embodiment. Sensors 2021, 21, 2678.

[5]

Radamson, H. H.; Zhu, H. L.; Wu, Z. H.; He, X. B.; Lin, H. X.; Liu, J. B.; Xiang, J. J.; Kong, Z. Z.; Xiong, W. J.; Li, J. J. et al. State of the art and future perspectives in advanced CMOS technology. Nanomaterials 2020, 10, 1555.

[6]

Cheng, J.; Wang, P. S.; Li, G.; Hu, Q. H.; Lu, H. Q. Recent advances in efficient computation of deep convolutional neural networks. Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77.

[7]

Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2020, 32, 1109–1139.

[8]

Tsai, H.; Ambrogio, S.; Narayanan, P.; Shelby, R. M.; Burr, G. W. Recent progress in analog memory-based accelerators for deep learning. J. Phys. D: Appl. Phys. 2018, 51, 283001.

[9]

Abadal, S.; Jain, A.; Guirado, R.; López-Alonso, J.; Alarcón, E. Computing graph neural networks: A survey from algorithms to accelerators. ACM Comput. Surv. 2022, 54, 191.

[10]

Ibrahim, Y.; Wang, H. B.; Liu, J. Y.; Wei, J. H.; Chen, L.; Rech, P.; Adam, K.; Guo, G. Soft errors in DNN accelerators: A comprehensive review. Microelectron. Reliab. 2020, 115, 113969.

[11]

Ghimire, D.; Kil, D.; Kim, S. H. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022, 11, 945.

[12]

Makarov, V. A.; Lobov, S. A.; Shchanikov, S.; Mikhaylov, A.; Kazantsev, V. B. Toward reflective spiking neural networks exploiting memristive devices. Front. Comput. Neurosci. 2022, 16, 859874.

[13]

Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349.

[14]

Bottou, L.; Curtis, F. E.; Nocedal, J. Optimization methods for large-scale machine learning. SIAM Rev. 2018, 60, 223–311.

[15]

Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065.

[16]

Zhou, F. Y.; Jin, L. P.; Dong, J. Review of convolutional neural network. Chin. J. Comput. 2017, 40, 1229–1251.

[17]

Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S. R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw. 2019, 111, 47–63.

[18]

Kwon, O.; Kim, S.; Agudov, N.; Krichigin, A.; Mikhaylov, A.; Grimaudo, R.; Valenti, D.; Spagnolo, B. Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure. Chaos, Solitons Fractals 2022, 162, 112480.

[19]

Li, S.; He, J. B.; Li, Y. M.; Rafique, M. U. Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 415–426.

[20]

Islam, R.; Li, H. T.; Chen, P. Y.; Wan, W. E.; Chen, H. Y.; Gao, B.; Wu, H. Q.; Yu, S. M.; Saraswat, K.; Wong, H. S. P. Device and materials requirements for neuromorphic computing. J. Phys. D:Appl. Phys. 2019, 52, 113001.

[21]

Kim, J. H.; Ryu, J. R.; Lee, B.; Chae, U.; Son, J. W.; Park, B. H.; Sun, W. Interpreting the entire connectivity of individual neurons in micropatterned neural culture with an integrated connectome analyzer of a neuronal network (iCANN). Front. Neuroanat. 2021, 15, 746057.

[22]

Cheng, C. D.; Tiw, P. J.; Cai, Y. M.; Yan, X. Q.; Yang, Y. C.; Huang, R. In-memory computing with emerging nonvolatile memory devices. Sci. China Inf. Sci. 2021, 64, 221402.

[23]

Sun, B.; Zhou, G. D.; Xu, K.; Yu, Q.; Duan, S. K. Self-powered memory systems. ACS Materials Lett. 2020, 2, 1669–1690.

[24]

Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

[25]

Han, J. K.; Yun, S. Y.; Lee, S. W.; Yu, J. M.; Choi, Y. K. A review of artificial spiking neuron devices for neural processing and sensing. Adv. Funct. Mater. 2022, 32, 2204102.

[26]

Liang, Y.; Lu, L. Q.; Jin, Y. C.; Xie, J. M.; Huang, R. R.; Zhang, J. S.; Lin, W. An efficient hardware design for accelerating sparse CNNs with NAS-based models. IEEE Trans. Comput.—Aided Des. Integr. Circuits Syst. 2022, 41, 597–613.

[27]

Guo, K. Y.; Han, S.; Yao, S.; Wang, Y.; Xie, Y.; Yang, H. Z. Software–hardware codesign for efficient neural network acceleration. IEEE Micro 2017, 37, 18–25.

[28]

Xiao, T. P.; Bennett, C. H.; Feinberg, B.; Agarwal, S.; Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 2020, 7, 031301.

[29]
Kim, S.; Gokmen, T.; Lee, H. M.; Haensch, W. E. Analog CMOS-based resistive processing unit for deep neural network training. In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems, Boston, USA, 2017, pp 422–425.
[30]

Onen, M.; Butters, B. A.; Toomey, E.; Gokmen, T.; Berggren, K. K. Design and characterization of superconducting nanowire-based processors for acceleration of deep neural network training. Nanotechnology 2020, 31, 025204.

[31]

Zanotti, T.; Puglisi, F. M.; Pavan, P. Energy-efficient non-von Neumann computing architecture supporting multiple computing paradigms for logic and binarized neural networks. J. Low Power Electron. Appl. 2021, 11, 29.

[32]

Lee, M. J.; Lee, S.; Lee, S.; Balamurugan, K.; Yoon, C.; Jang, J. T.; Kim, S. H.; Kwon, D. H.; Kim, M.; Ahn, J. P. et al. Synaptic devices based on two-dimensional layered single-crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 2018, 10, 23–30.

[33]

Zhu, J. D.; Zhang, T.; Yang, Y. C.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.

[34]

Upadhyay, N. K.; Jiang, H.; Wang, Z. R.; Asapu, S.; Xia, Q. F.; Yang, J. J. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1800589.

[35]

Ielmini, D.; Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 2020, 31, 092001.

[36]

Lu, K. K.; Li, X. M.; Sun, Q. Q.; Pang, X. C.; Chen, J. Z.; Minari, T.; Liu, X. Y.; Song, Y. L. Solution-processed electronics for artificial synapses. Mater. Horiz. 2021, 8, 447–470.

[37]

Pan, X.; Jin, T. Y.; Gao, J.; Han, C.; Shi, Y. M.; Chen, W. et al. Stimuli-enabled artificial synapses for neuromorphic perception: Progress and perspectives. Small 2020, 16, 2001504.

[38]

Luo, L. Q. Architectures of neuronal circuits. Science 2021, 373, eabg7285.

[39]

Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Func. Mater. 2019, 29, 1903700.

[40]

Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Recent progress in three-terminal artificial synapses: From device to system. Small 2019, 15, 1900695.

[41]

Ren, Y.; Yang, X. Y.; Zhou, L.; Mao, J. Y.; Han, S. T.; Zhou, Y. Recent advances in ambipolar transistors for functional applications. Adv. Funct. Mater. 2019, 29, 1902105.

[42]

Ling, H. F.; Koutsouras, D. A.; Kazemzadeh, S.; Van De Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 2020, 7, 011307.

[43]

Shao, L.; Zhao, Y.; Liu, Y. Q. Organic synaptic transistors: The evolutionary path from memory cells to the application of artificial neural networks. Adv. Funct. Mater. 2021, 31, 2101951.

[44]

Sun, K. X.; Chen, J. S.; Yan, X. B. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021, 31, 2006773.

[45]

Wang, C. L.; Li, Y. Z.; Wang, Y. C.; Xu, X. D.; Fu, M. Y.; Liu, Y. Y.; Lin, Z. Q.; Ling, H. F.; Gkoupidenis, P.; Yi, M. D. et al. Thin-film transistors for emerging neuromorphic electronics: Fundamentals, materials, and pattern recognition. J. Mater. Chem. C 2021, 9, 11464–11483.

[46]

Li, C. W.; Xiong, T. Y.; Yu, P.; Fei, J. J.; Mao, L. Q. Synaptic iontronic devices for brain-mimicking functions: Fundamentals and applications. ACS Appl. Bio Mater. 2021, 4, 71–84.

[47]

Tominov, R. V.; Vakulov, Z. E.; Avilov, V. I.; Khakhulin, D. A.; Polupanov, N. V.; Smirnov, V. A.; Ageev, O. A. The effect of growth parameters on electrophysical and memristive properties of vanadium oxide thin films. Molecules 2021, 26, 118.

[48]

Xia, Q. F.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323.

[49]

Kim, S. G.; Han, J. S.; Kim, H.; Kim, S. Y.; Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 2018, 3, 1800457.

[50]

Avilov, V. I.; Polupanov, N. V.; Tominov, R. V.; Solodovnik, M. S.; Konoplev, B. G.; Smirnov, V. A.; Ageev, O. A. Resistive switching of GaAs oxide nanostructures. Materials 2020, 13, 3451.

[51]

Yang, R.; Huang, H. M.; Guo, X. Memristive synapses and neurons for bioinspired computing. Adv. Electron. Mater. 2019, 5, 1900287.

[52]

Tominov, R. V.; Vakulov, Z. E.; Avilov, V. I.; Khakhulin, D. A.; Fedotov, A. A.; Zamburg, E. G.; Smirnov, V. A.; Ageev, O. A. Synthesis and memristor effect of a forming-free ZnO nanocrystalline films. Nanomaterials 2020, 10, 1007.

[53]

Tominov, R. V.; Vakulov, Z. E.; Polupanov, N. V.; Saenko, A. V.; Avilov, V. I.; Ageev, O. A.; Smirnov, V. A. Nanoscale-resistive switching in forming-free zinc oxide memristive structures. Nanomaterials 2022, 12, 455.

[54]

Guo, T.; Sun, B.; Ranjan, S.; Jiao, Y. X.; Wei, L.; Zhou, Y. N.; Wu, Y. A. From memristive materials to neural networks. ACS Appl. Mater. Interfaces 2020, 12, 54243–54265.

[55]

Zhou, G. D.; Wang, Z. R.; Sun, B.; Zhou, F. C.; Sun, L. F.; Zhao, H. B.; Hu, X. F.; Peng, X. Y.; Yan, J.; Wang, H. M. et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 2022, 8, 2101127.

[56]

Shamsi, J.; Amirsoleimani, A.; Mirzakuchaki, S.; Ahmadi, M. Modular neuron comprises of memristor-based synapse. Neural Comput. Appl. 2017, 28, 1–11.

[57]

Schmitt, R.; Spring, J.; Korobko, R.; Rupp, J. L. M. Design of oxygen vacancy configuration for memristive systems. ACS Nano 2017, 11, 8881–8891.

[58]

Li, Y. Y.; Fuller, E. J.; Sugar, J. D.; Yoo, S.; Ashby, D. S.; Bennett, C. H.; Horton, R. D.; Bartsch, M. S.; Marinella, M. J.; Lu, W. D. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Adv. Mater. 2020, 32, 2003984.

[59]

Heisig, T.; Baeumer, C.; Gries, U. N.; Mueller, M. P.; La Torre, C.; Luebben, M.; Raab, N.; Du, H. C.; Menzel, S.; Mueller, D. N. et al. Oxygen exchange processes between oxide memristive devices and water molecules. Adv. Mater. 2018, 30, 1800957.

[60]

Khot, A. C.; Desai, N. D.; Khot, K. V.; Salunkhe, M. M.; Chougule, M. A.; Bhave, T. M.; Kamat, R. K.; Musselman, K. P.; Dongale, T. D. Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature. Mater. Des. 2018, 151, 37–47.

[61]

Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R. Resistive switching in microscale anodic titanium dioxide-based memristors. Superlattices Microstruct. 2018, 113, 135–142.

[62]

Abbas, H.; Abbas, Y.; Truong, S. N.; Min, K. S.; Park, M. R.; Cho, J.; Yoon, T. S.; Kang, C. J. A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond. Sci. Technol. 2017, 32, 065014.

[63]

Ryu, J. H.; Kim, S. Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos, Solitons Fractals 2020, 140, 110236.

[64]

Tominov, R.; Avilov, V.; Vakulov, Z.; Khakhulin, D.; Ageev, O.; Valov, I.; Smirnov, V. Forming-free resistive switching of electrochemical titanium oxide localized nanostructures: Anodization, chemical composition, nanoscale size effects, and memristive storage. Adv. Electron. Mater. 2022, 8, 2200215.

[65]

Avilov, V. I.; Smirnov, V. A.; Tominov, R. V.; Sharapov, N. A.; Avakyan, A. A.; Polyakova, V. V.; Ageev, O. A. Atomic force microscopy of titanium oxide nanostructures with forming-free resistive switching. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 699, 012004.

[66]
Avilov, V. I.; Tominov, R. V.; Sharapov, N. A.; Smirnov, V. A.; Ageev, O. A. Local anodic oxidation proceses influence and temterature stability on the memristive propherties of titanium oxide nanostructures for ReRAM development. In 2020 Moscow Workshop on Electronic and Networking Technologies, Moscow, Russia, 2020, pp 1–5.
[67]

Dukhan, D. D.; Tominov, R. V.; Avilov, V. I.; Zamburg, E. G.; Smirnov, V. A.; Ageev, O. A. Investigation of resistive switching effect in nanocrystalline TiO2 thin film for neuromorphic system manufacturing. J. Phys.: Conf. Ser. 2019, 1400, 055032.

[68]

Karen'Kih, O. G.; Avilov, V. I.; Smirnov, V. A.; Fedotov, A. A.; Sharapov, N. A.; Polupanov, N. A. Modelling of local anodic oxidation of titanium oxide nanostructures formation process. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 443, 012013.

[69]

Avilov, V. I.; Ageev, O. A.; Blinov, Y. F.; Konoplev, B. G.; Polyakov, V. V.; Smirnov, V. A.; Tsukanova, O. G. Simulation of the formation of nanosize oxide structures by local anode oxidation of the metal surface. Tech. Phys. 2015, 60, 717–723.

[70]

Bharti, B.; Kumar, S.; Lee, H. N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2022
Revised: 17 February 2023
Accepted: 05 March 2023
Published: 20 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The reported study was funded by the Russian Federation Government (Agreement No. 075-15-2022-1123) (mathematical model development and theoretical calculations). The fabrication of memristor structures and their resistive switching investigation were supported by a grant from the Russian Science Foundation No. 22-79-10215, https://rscf.ru/project/22-79-10215/, at Southern Federal University. Multilevel switching was researched with the financial support of the grant of the President of the Russian Federation МК-2290.2022.4.

Return