Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The relative balance of electron and hole injection is crucial for the achievement of highly efficient quantum dot (QD) light-emitting diodes (QLEDs). Here, an inverted red QLED with the utilization of an organic emitting layer (EML) was obtained, exhibiting peak current efficiency (CE) and external quantum efficiency (EQE) of 25.63 cd/A and 23.20%, respectively. In the proposed device, the organic EML, which is a blend of fac-tris(2-phenylpyridine)iridium (Ir(ppy)3) and 4,4’-bis(N-carbazolyl)-1,1’-biphenyl (CBP), works as an exciton harvester to capture the leaked electrons from QD layer and the injected holes from hole transporting layer (HTL), then affording energy transfer from organic EML to the adjacent QD layer so that the emission of QD is enhanced significantly. At the same time, according to the results of hole-only and electron-only devices, the insertion of organic EML promotes the hole injection, and eliminates excess electrons from QD to HTL, thus leading to a better match of hole and electron injection in the device. On the basis of the above benefits, the optimal QLED with a 10 nm organic EML offered ~ 2-fold improvements of CE and EQE, respectively, relative to the control device. Furthermore, a better operational lifetime of QLEDs based on the organic EML was achieved.
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.
Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.
Zhang, H.; Chen, S. M.; Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 2018, 12, 697–704.
Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.
Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.
Roest, A. L.; Kelly, J. J.; Vanmaekelbergh, D.; Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 2002, 89, 036801.
Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.
Chen, M.; Xie, L. M.; Wei, C. T.; Yi, Y. Q. Q.; Chen, X. L.; Yang, J.; Zhuang, J. Y.; Li, F. S.; Su, W. M.; Cui, Z. High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 2021, 14, 4125–4131.
Li, Y. F.; Fan, X.; Shen, C.; Shi, X. X.; Li, P. C.; Hui, K. N.; Fan, J. P.; Kang, K.; Zhang, T.; Qian, L. Charge balance in red QLEDs for high efficiency and stability via ionic liquid doping. Adv. Funct. Mater. 2022, 32, 2203641.
Lan, L. H.; Liu, B. C.; Tao, H.; Zou, J. H.; Jiang, C. B.; Xu, M.; Wang, L.; Peng, J. B.; Cao, Y. Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye. J. Mater. Chem. C 2019, 7, 5755–5763.
Chen, J. F.; Song, D. D.; Zhao, S. L.; Qiao, B.; Zheng, W. Y.; Xu, Z. Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers. Org. Electron. 2021, 94, 106169.
Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.
Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.
Chang, J. H.; Park, P.; Jung, H.; Jeong, B. G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L. A.; Lee, D. C. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 2018, 12, 10231–10239.
Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.
Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.
Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.
Alexandrov, A.; Zvaigzne, M.; Lypenko, D.; Nabiev, I.; Samokhvalov, P. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 2020, 10, 7496.
Kim, J. H.; Han, C. Y.; Lee, K. H.; An, K. S.; Song, W.; Kim, J.; Oh, M. S.; Do, Y. R.; Yang, H. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 2015, 27, 197–204.
Wang, F. Z.; Sun, W. D.; Liu, P.; Wang, Z. B.; Zhang, J.; Wei, J. L.; Li, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. A. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies. J. Phys. Chem. Lett. 2019, 10, 960–965.
Zheng, W. Y.; Song, D. D.; Zhao, S. L.; Qiao, B.; Xu, Z.; Chen, J. F.; Wang, P.; Liang, Y. All-solution processed inverted QLEDs with double hole transport layers and thermal activated delay fluorescent dopant as energy transfer medium. Org. Electron. 2020, 77, 105544.
Yi, Y. Q. Q.; Qi, D. W.; Wei, H. H.; Xie, L. M.; Chen, Y. Y.; Yang, J.; Hu, Z. S.; Liu, Y.; Meng, X. Q.; Su, W. M. et al. Molecular design of diazo compound for carbene-mediated cross-Linking of hole-transport polymer in QLED with reduced energy barrier and improved charge balance. ACS Appl. Mater. Interfaces 2022, 14, 39149–39158.
Yang, L. Q.; Li, X. F.; Yang, Q. Q.; Wang, S. M.; Tian, H. K.; Ding, J. Q.; Wang, L. X. High-performance red quantum-dot light-emitting diodes based on organic electron transporting layer. Adv. Funct. Mater. 2021, 31, 2007686.
Zheng, W. Y.; Xu, Z.; Song, D. D.; Zhao, S. L.; Qiao, B.; Chen, J. F.; Wang, P.; Zheng, X. G. Enhancing the efficiency and the luminance of quantum dot light-emitting diodes by inserting a leaked electron harvesting layer with thermal-activated delayed fluorescence material. Org. Electron. 2019, 65, 357–362.
Zhang, Y. N.; Liu, Y. S.; Yan, M. M.; Wei, Y.; Zhang, Q. L.; Zhang, Y. Efficient quantum-dot light-emitting diodes employing thermally activated delayed fluorescence emitters as exciton harvesters. ACS Appl. Mater. Interfaces 2018, 10, 7435–7441.
Liu, G. H.; Zhou, X.; Sun, X. W.; Chen, S. M. Performance of inverted quantum dot light-emitting diodes enhanced by using phosphorescent molecules as exciton harvesters. J. Phys. Chem. C 2016, 120, 4667–4672.
Mutlugun, E.; Guzelturk, B.; Abiyasa, A. P.; Gao, Y.; Sun, X. W.; Demir, H. V. Colloidal quantum dot light-emitting diodes employing phosphorescent small organic molecules as efficient exciton harvesters. J. Phys. Chem. Lett. 2014, 5, 2802–2807.
Lee, S.; Hahm, D.; Yoon, S. Y.; Yang, H.; Bae, W. K.; Kwak, J. Quantum-dot and organic hybrid light-emitting diodes employing a blue common layer for simple fabrication of full-color displays. Nano Res. 2022, 15, 6477–6482.
Reineke, S.; Walzer, K.; Leo, K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 2007, 75, 125328.
Clegg, R. M. Förster resonance energy transfer—FRET what is it, why do it, and how it’s done. Lab. Tech. Biochem. Mol. Biol. 2009, 33, 1–57.
Baek, H. I.; Lee, C. Electroluminescence characteristics of n-type matrix materials doped with iridium-based green and red phosphorescent emitters. J. Appl. Phys. 2008, 103, 054510.
Zhang, D. D.; Liu, Y. H.; Zhu, L. Q. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. iScience 2022, 25, 105111.
Baek, H. I.; Lee, C.; Chin, B. D. Comparison of the carrier mobility, unipolar conduction, and light emitting characteristics of phosphorescent host-dopant system. Synth. Met. 2012, 162, 2355–2360.
Sanderson, S.; Philippa, B.; Vamvounis, G.; Burn, P. L.; White, R. D. Understanding charge transport in Ir(ppy)3:CBP OLED films. J. Chem. Phys. 2019, 150, 094110.