Journal Home > Volume 16 , Issue 7

All-solution-processed inverted quantum dot (QD) light-emitting diodes (QLEDs) with transparent bottom cathodes can be directly connected to the n-type thin-film transistors, offering a feasible solution for low-cost active matrix-driven QD displays. However, the subsequent solution-deposition of the hole-transporting layer destroys the underneath QD films, resulting in largely deteriorated device performance. Various strategies have been implemented to prevent QD film from dissolution, but all at a heavy cost of device performance suffering from either reduced efficiency or increased driving voltage. Here, a facile and effective water-treatment approach for QD film to fabricate inverted QLEDs through all solution processing is reported. The water treatment substitutes the long-chain oleate ligands with hydroxyl groups, resulting in significantly improved non-polar solvent resistance of the QD films. Importantly, the QD films reserve their excellent photoluminescence efficiency after water treatment. With the water-treated QD film as the emissive layer, all-solution-processed inverted red QLED with a peak external quantum efficiency of 19.6%, a turn-on voltage of 1.8 V, and a T50 operational lifetime of 150,000 h at 100 cd·m−2 was achieved. Furthermore, efficient and low-voltage-driven green and blue QLEDs can also be prepared with this method. This work provides a feasible strategy for the fabrication of high-performance all-solution-processed inverted QLEDs, paving the way toward achieving QLEDs by all ink-jet printing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance all-solution-processed inverted quantum dot light-emitting diodes enabled by water treatment

Show Author's information Qianqing Hu1Junjie Si1( )Desui Chen2Xiaoming Hao1Rui Xu1Yihang Du1Zhuopeng Du1Xinquan Gong1Hong Zhao1Peiqing Cai1Qi Ai1Xin Yao1Yu Yan3Zenan Zhang1Muzhi Cai1Wei Liu4Yongyin Kang5Zugang Liu1( )
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing 314000, China
Zhejiang Najing Technology Co., Ltd., Quzhou 324004, China
Najing Technology Corporation Ltd., Hangzhou 310052, China

Abstract

All-solution-processed inverted quantum dot (QD) light-emitting diodes (QLEDs) with transparent bottom cathodes can be directly connected to the n-type thin-film transistors, offering a feasible solution for low-cost active matrix-driven QD displays. However, the subsequent solution-deposition of the hole-transporting layer destroys the underneath QD films, resulting in largely deteriorated device performance. Various strategies have been implemented to prevent QD film from dissolution, but all at a heavy cost of device performance suffering from either reduced efficiency or increased driving voltage. Here, a facile and effective water-treatment approach for QD film to fabricate inverted QLEDs through all solution processing is reported. The water treatment substitutes the long-chain oleate ligands with hydroxyl groups, resulting in significantly improved non-polar solvent resistance of the QD films. Importantly, the QD films reserve their excellent photoluminescence efficiency after water treatment. With the water-treated QD film as the emissive layer, all-solution-processed inverted red QLED with a peak external quantum efficiency of 19.6%, a turn-on voltage of 1.8 V, and a T50 operational lifetime of 150,000 h at 100 cd·m−2 was achieved. Furthermore, efficient and low-voltage-driven green and blue QLEDs can also be prepared with this method. This work provides a feasible strategy for the fabrication of high-performance all-solution-processed inverted QLEDs, paving the way toward achieving QLEDs by all ink-jet printing.

Keywords: quantum dots, electroluminescence, solvent-resistance, inverted, all solution processing

References(45)

[1]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[2]

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

[3]

Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

[4]

Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345.

[5]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[6]

Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

[7]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[8]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[9]

Meng, T. T.; Zheng, Y. T.; Zhao, D. L.; Hu, H. L.; Zhu, Y. B.; Xu, Z. W.; Ju, S. M.; Jing, J. P.; Chen, X.; Gao, H. J. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022, 16, 297–303.

[10]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[11]

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

[12]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[13]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[14]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[15]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[16]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[17]

Dobbertin, T.; Kroeger, M.; Heithecker, D.; Schneider, D.; Metzdorf, D.; Neuner, H.; Becker, E.; Johannes, H. H.; Kowalsky, W. Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes. Appl. Phys. Lett. 2003, 82, 284–286.

[18]

Chu, T. Y.; Chen, J. F.; Chen, S. Y.; Chen, C. J.; Chen, C. H. Highly efficient and stable inverted bottom-emission organic light emitting devices. Appl. Phys. Lett. 2006, 89, 053503.

[19]

Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

[20]

Son, D. I.; Kim, H. H.; Hwang, D. K.; Kwon, S.; Choi, W. K. Inverted CdSe-ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated. J. Mater. Chem. C 2014, 2, 510–514.

[21]

Kim, H. H.; Park, S.; Yi, Y.; Son, D. I.; Park, C.; Hwang, D. K.; Choi, W. K. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Sci. Rep. 2015, 5, 8968.

[22]

Zhang, H.; Li, H. R.; Sun, X. W.; Chen, S. M. Inverted quantum-dot light-emitting diodes fabricated by all-solution processing. ACS Appl. Mater. Interfaces 2016, 8, 5493–5498.

[23]

Kim, D.; Fu, Y.; Kim, S.; Lee, W.; Lee, K. H.; Chung, H. K.; Lee, H. J.; Yang, H.; Chae, H. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device. ACS Nano 2017, 11, 1982–1990.

[24]

Fu, Y.; Kim, D.; Moon, H.; Yang, H.; Chae, H. Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes. J. Mater. Chem. C 2017, 5, 522–526.

[25]

Liu, Y.; Jiang, C. B.; Song, C.; Wang, J. H.; Mu, L.; He, Z. W.; Zhong, Z. J.; Cun, Y.; Mai, C.; Wang, J. et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes. ACS Nano 2018, 12, 1564–1570.

[26]

Cao, F.; Wu, Q. Q.; Yang, X. Y. Efficient and stable inverted quantum dot light-emitting diodes enabled by an inorganic copper-doped tungsten phosphate hole-injection layer. ACS Appl. Mater. Interfaces 2019, 11, 40267–40273.

[27]

Yang, Z. W.; Wu, Q. Q.; Lin, G. L.; Zhou, X. C.; Wu, W. J.; Yang, X. Y.; Zhang, J. H.; Li, W. W. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater. Horiz. 2019, 6, 2009–2015.

[28]

Cun, Y. K.; Mai, C. H.; Luo, Y.; Mu, L.; Li, J. L.; Cao, L. J.; Yu, D. M.; Li, M. Z.; Zhang, B. B.; Li, H. H. et al. All-solution processed high performance inverted quantum dot light emitting diodes. J. Mater. Chem. C 2020, 8, 4264–4270.

[29]

Castan, A.; Kim, H. M.; Jang, J. All-solution-processed inverted quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2014, 6, 2508–2515.

[30]

Triana, M. A.; Chen, H.; Zhang, D. D.; Camargo, R. J.; Zhai, T. S.; Duhm, S.; Dong, Y. J. Bright inverted quantum-dot light-emitting diodes by all-solution processing. J. Mater. Chem. C 2018, 6, 7487–7492.

[31]

Wu, J. L.; Chen, L. X.; Tan, X. W.; Zhang, Q. M.; Xiong, Z. H.; Lei, Y. L. Large performance enhancement in all-solution-processed, full-color, inverted quantum-dot light-emitting diodes using graphene oxide doped hole injection layer. J. Phys. Chem. C 2020, 124, 11617–11624.

[32]

Fu, Y.; Jiang, W.; Kim, D.; Lee, W.; Chae, H. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers. ACS Appl. Mater. Interfaces 2018, 10, 17295–17300.

[33]

Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127, 3870–3878.

[34]

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

[35]

Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797–5809.

[36]

Yang, Y.; Qin, H. Y.; Jiang, M. W.; Lin, L.; Fu, T.; Dai, X. L.; Zhang, Z. X.; Niu, Y.; Cao, H. J.; Jin, Y. Z. et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133–2138.

[37]

Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.

[38]

Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

[39]

Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

[40]

Shi, G. Z.; Wang, H. B.; Zhang, Y. H.; Cheng, C.; Zhai, T. S.; Chen, B. T.; Liu, X. Y.; Jono, R.; Mao, X. N.; Liu, Y. et al. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381.

[41]

Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

[42]

Zhu, Y. W.; Yuan, Z. C.; Cui, W.; Wu, Z. W.; Sun, Q. J.; Wang, S. D.; Kang, Z. H.; Sun, B. Q. A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. J. Mater. Chem. A 2014, 2, 1436–1442.

[43]

Pu, Y. J.; Chiba, T.; Ideta, K.; Takahashi, S.; Aizawa, N.; Hikichi, T.; Kido, J. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes. Adv. Mater. 2015, 27, 1327–1332.

[44]

Li, Y. F.; Dai, X. L.; Chen, D. S.; Ye, Y. X.; Gao, Y.; Peng, X. G.; Jin, Y. Z. Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate. J. Mater. Chem. C 2019, 7, 3154–3159.

[45]

Cao, F.; Zhao, D. W.; Shen, P. Y.; Wu, J. L.; Wang, H. R.; Wu, Q. Q.; Wang, F. J.; Yang, X. Y. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Adv. Opt. Mater. 2018, 6, 1800652.

File
12274_2023_5635_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 January 2023
Revised: 01 March 2023
Accepted: 03 March 2023
Published: 05 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61905230, 52072355, 11904345, 52103241, and 61904160), Natural Science Foundation of Zhejiang Province (No. LQ19F040004), and the Liu Zugang Expert Workstation of Yunnan Province.

Return