Journal Home > Volume 16 , Issue 7

Metal-organic frameworks (MOFs) with HKUST-like tbo structures have been paid specific attention for gas sorption and separation because of their specific pore features. According to the geometric similarity of spirobifluorene and [Cu2(O2CR)4] paddlewheel secondary building units (Cu2 SBUs) in HKUST-1, we attempted to rationally construct a HKUST-like MOF by a substitution strategy. Using a judiciously designed octatopic carboxylate ligand, a copper-organic framework, JUC-220, was synthesized. The crystals of JUC-220 exhibited characteristic features in cubic with disorder, possibly due to the disorder substitution and high symmetry of tbo topology. Two related HKUST-like structure models were considered. Thanks to the suitable pore size and specific pore shapes, the adsorption selectivities of JUC-220 for C3H8/CH4 (5/85) and C2H6/CH4 (10/85) gas mixtures were as high as 736 and 46 respectively at 298 K and 1 bar. Specially, JUC-220 exhibited excellent trace adsorption performance of C3H8 and C2H6 as well as reverse adsorption behavior of C2H6/C2H4. Thus, JUC-220 serves as an example of HKUST-like MOF with disorder for light hydrocarbons separation and the implementation of substitution which can be used to explore more porous MOFs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly selective adsorption of light hydrocarbons in a HKUST-like MOF constructed from spirobifluorene-based octacarboxylate ligand by a substitution strategy

Show Author's information Xinli ShiYucong ZuXilin LiTongyi ZhaoHao RenFuxing Sun( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China

Abstract

Metal-organic frameworks (MOFs) with HKUST-like tbo structures have been paid specific attention for gas sorption and separation because of their specific pore features. According to the geometric similarity of spirobifluorene and [Cu2(O2CR)4] paddlewheel secondary building units (Cu2 SBUs) in HKUST-1, we attempted to rationally construct a HKUST-like MOF by a substitution strategy. Using a judiciously designed octatopic carboxylate ligand, a copper-organic framework, JUC-220, was synthesized. The crystals of JUC-220 exhibited characteristic features in cubic with disorder, possibly due to the disorder substitution and high symmetry of tbo topology. Two related HKUST-like structure models were considered. Thanks to the suitable pore size and specific pore shapes, the adsorption selectivities of JUC-220 for C3H8/CH4 (5/85) and C2H6/CH4 (10/85) gas mixtures were as high as 736 and 46 respectively at 298 K and 1 bar. Specially, JUC-220 exhibited excellent trace adsorption performance of C3H8 and C2H6 as well as reverse adsorption behavior of C2H6/C2H4. Thus, JUC-220 serves as an example of HKUST-like MOF with disorder for light hydrocarbons separation and the implementation of substitution which can be used to explore more porous MOFs.

Keywords: reticular chemistry, disorder, light hydrocarbons separation, substitution, HKUST-like metal-organic frameworks (MOFs), trace adsorption

References(71)

[1]

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

[2]

Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.

[3]

Barnett, B. R.; Gonzalez, M. I.; Long, J. R. Recent progress towards light hydrocarbon separations using metal-organic frameworks. Trends Chem. 2019, 1, 159–171.

[4]

Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

[5]

Freund, R.; Canossa, S.; Cohen, S. M.; Yan, W.; Deng, H. X.; Guillerm, V.; Eddaoudi, M.; Madden, D. G.; Fairen-Jimenez, D.; Lyu, H. et al. 25 years of reticular chemistry. Angew. Chem., Int. Ed. 2021, 60, 23946–23974.

[6]

Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal-organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542.

[7]

Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O'Keeffe, M.; Yaghi, O. M. Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 2001, 123, 11482–11483.

[8]

Øien-Ødegaard, S.; Shearer, G. C.; Wragg, D. S.; Lillerud, K. P. Pitfalls in metal-organic framework crystallography: Towards more accurate crystal structures. Chem. Soc. Rev. 2017, 46, 4867–4876.

[9]

Cairns, A. B.; Goodwin, A. L. Structural disorder in molecular framework materials. Chem. Soc. Rev. 2013, 42, 4881–4893.

[10]

Meekel, E. G.; Goodwin, A. L. Correlated disorder in metal-organic frameworks. CrystEngComm 2021, 23, 2915–2922.

[11]

Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.

[12]

Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887–11894.

[13]

Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Micropor. Mesopor. Mater. 2002, 55, 217–230.

[14]

Spanopoulos, I.; Tsangarakis, C.; Klontzas, E.; Tylianakis, E.; Froudakis, G.; Adil, K.; Belmabkhout, Y.; Eddaoudi, M.; Trikalitis, P. N. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 2016, 138, 1568–1574.

[15]

He, Y. B.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120.

[16]

Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32–51.

[17]

Eubank, J. F.; Mouttaki, H.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Luebke, R.; Alkordi, M.; Eddaoudi, M. The quest for modular nanocages: Tbo-MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks. J. Am. Chem. Soc. 2011, 133, 14204–14207.

[18]

Moreau, F.; Kolokolov, D. I.; Stepanov, A. G.; Easun, T. L.; Dailly, A.; Lewis, W.; Blake, A. J.; Nowell, H.; Lennox, M. J.; Besley, E. et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. Proc. Natl. Acad. Sci. USA 2017, 114, 3056–3061.

[19]

Chen, Y.; Wang, B.; Wang, X. Q.; Xie, L. H.; Li, J. P.; Xie, Y. B.; Li, J. R. A copper(II)-paddlewheel metal-organic framework with exceptional hydrolytic stability and selective adsorption and detection ability of aniline in water. ACS Appl. Mater. Interfaces 2017, 9, 27027–27035.

[20]

Shao, K.; Wen, H. M.; Liang, C. C.; Xiao, X. Y.; Gu, X. W.; Chen, B. L.; Qian, G. D.; Li, B. Engineering supramolecular binding sites in a chemically stable metal-organic framework for simultaneous high C2H2 storage and separation. Angew. Chem., Int. Ed. 2022, 61, e202211523.

[21]

Shi, X. L.; Zu, Y. C.; Jiang, S. S.; Sun, F. X. An anionic indium-organic framework with spirobifluorene-based ligand for selective adsorption of organic dyes. Inorg. Chem. 2021, 60, 1571–1578.

[22]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[23]

Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q. et al. Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 10294–10297.

[24]

Jia, J. T.; Sun, F. X.; Fang, Q. R.; Liang, X. Q.; Cai, K.; Bian, Z.; Zhao, H. J.; Gao, L. X.; Zhu, G. S. A novel low density metal-organic framework with pcu topology by dendritic ligand. Chem. Commun. 2011, 47, 9167–9169.

[25]

Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Spiro compounds for organic optoelectronics. Chem. Rev. 2007, 107, 1011–1065.

[26]

Moreau, F.; Audebrand, N.; Poriel, C.; Moizan-Baslé, V.; Ouvry, J. A 9,9'-spirobifluorene based metal-organic framework: Synthesis, structure analysis and gas sorption properties. J. Mater. Chem. 2011, 21, 18715–18722.

[27]

Park, H. J.; Jang, J. K.; Kim, S. Y.; Ha, J. W.; Moon, D.; Kang, I. N.; Bae, Y. S.; Kim, S.; Hwang, D. H. Synthesis of a Zr-based metal-organic framework with spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg. Chem. 2017, 56, 12098–12101.

[28]

Fang, X. T.; Wang, L. Y.; He, X.; Xu, J. Q.; Duan, Z. M. A 3D calcium spirobifluorene metal-organic framework: Single-crystal-to-single-crystal transformation and toluene detection by a quartz crystal microbalance sensor. Inorg. Chem. 2018, 57, 1689–1692.

[29]

Pang, J. D.; Wu, M. Y.; Qin, J. S.; Liu, C. P.; Lollar, C. T.; Yuan, D. Q.; Hong, M. C.; Zhou, H. C. Solvent-assisted, thermally triggered structural transformation in flexible mesoporous metal-organic frameworks. Chem. Mater. 2019, 31, 8787–8793.

[30]

Hu, F. L.; Di, Z. Y.; Wu, M. Y.; Hong, M. C.; Li, J. A robust multifunctional Eu6-cluster based framework for gas separation and recognition of small molecules and heavy metal ions. Cryst. Growth Des. 2019, 19, 6381–6387.

[31]

Moreau, F.; Audebrand, N.; Poriel, C. 9,9'-Spirobifluorene based zinc coordination polymers: A study on linker geometry and topology. CrystEngComm 2020, 22, 293–303.

[32]

Liu, Y.; Wang, J. M.; Imaz, I.; Maspoch, D. Assembly of colloidal clusters driven by the polyhedral shape of metal-organic framework particles. J. Am. Chem. Soc. 2021, 143, 12943–12947.

[33]

Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A. D.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618–2625.

[34]

Weber, J.; Antonietti, M.; Thomas, A. Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties. Macromolecules 2008, 41, 2880–2885.

[35]

Wu, C. Y.; Liu, Y. M.; Liu, H.; Duan, C. H.; Pan, Q. Y.; Zhu, J.; Hu, F.; Ma, X. Y.; Jiu, T. G.; Li, Z. B. et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 2018, 140, 10016–10024.

[36]

Modak, A.; Maegawa, Y.; Goto, Y.; Inagaki, S. Synthesis of 9,9'-spirobifluorene-based conjugated microporous polymers by FeCl3-mediated polymerization. Polym. Chem. 2016, 7, 1290–1296.

[37]

Zu, Y. C.; Li, J. W.; Li, X. L.; Zhao, T. Y.; Ren, H.; Sun, F. X. Imine-linked porous aromatic frameworks based on spirobifluorene building blocks for CO2 separation. Micropor. Mesopor. Mater. 2022, 334, 111779.

[38]

Suresh, K.; Kalenak, A. P.; Sotuyo, A.; Matzger, A. J. Metal-organic framework (MOF) morphology control by design. Chem. —Eur. J. 2022, 28, e202200334.

[39]

Cayron, C. Multiple twinning in cubic crystals: Geometric/algebraic study and its application for the identification of the Σ3n grain boundaries. Acta Crystallogr. A 2007, 63, 11–29.

[40]

Hadjiivanov, K. I.; Panayotov, D. A.; Mihaylov, M. Y.; Ivanova, E. Z.; Chakarova, K. K.; Andonova, S. M.; Drenchev, N. L. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev. 2021, 121, 1286–1424.

[41]

Sahoo, R.; Das, M. C. C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord. Chem. Rev. 2021, 442, 213998.

[42]

Dincă, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 2006, 128, 16876–16883.

[43]

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.

[44]

Gao, S.; Morris, C. G.; Lu, Z. Z.; Yan, Y.; Godfrey, H. G. W.; Murray, C.; Tang, C. C.; Thomas, K. M.; Yang, S. H.; Schröder, M. Selective hysteretic sorption of light hydrocarbons in a flexible metal-organic framework material. Chem. Mater. 2016, 28, 2331–2340.

[45]

Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.

[46]

He, Y. B.; Zhang, Z. J.; Xiang, S. C.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493–6495.

[47]

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Cui, X. L.; Xing, H. B. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A 2019, 7, 27560–27566.

[48]

Plonka, A. M.; Chen, X. Y.; Wang, H.; Krishna, R.; Dong, X. L.; Banerjee, D.; Woerner, W. R.; Han, Y.; Li, J.; Parise, J. B. Light hydrocarbon adsorption mechanisms in two calcium-based microporous metal organic frameworks. Chem. Mater. 2016, 28, 1636–1646.

[49]

Chen, Y. L.; Bai, X. Y.; Liu, D. H.; Fu, X. L.; Yang, Q. Y. High-throughput computational exploration of MOFs with open Cu sites for adsorptive separation of hydrogen isotopes. ACS Appl. Mater. Interfaces 2022, 14, 24980–24991.

[50]

Ponraj, Y. K.; Borah, B. High-throughput computational screening of metal-organic frameworks for the separation of methane from ethane and propane. J. Phys. Chem. C 2021, 125, 1839–1854.

[51]

Yang, S. Q.; Hu, T. L. Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons. Coord. Chem. Rev. 2022, 468, 214628.

[52]

Cheng, H. T.; Wang, Q.; Meng, L. L.; Sheng, P.; Zhang, Z. H.; Ding, M.; Gao, Y. J.; Bai, J. F. Formation of a N/O/F-rich and rooflike cluster-based highly stable Cu(I/II)-MOF for promising pipeline natural gas upgrading by the recovery of individual C3H8 and C2H6 gases. ACS Appl. Mater. Interfaces 2021, 13, 40713–40723.

[53]

Zhou, J. Y.; Ke, T.; Steinke, F.; Stock, N.; Zhang, Z. G.; Bao, Z. B.; He, X.; Ren, Q. L.; Yang, Q. W. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure. J. Am. Chem. Soc. 2022, 144, 14322–14329.

[54]

Jia, J. T.; Wang, L.; Sun, F. X.; Jing, X. F.; Bian, Z.; Gao, L. X.; Krishna, R.; Zhu, G. S. The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains. Chem. —Eur. J. 2014, 20, 9073–9080.

[55]

Zhang, Y. F.; Xiao, H. Y.; Zhou, X.; Wang, X.; Li, Z. Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3. Ind. Eng. Chem. Res. 2017, 56, 8689–8696.

[56]

Huang, Y. B.; Lin, Z. J.; Fu, H. R.; Wang, F.; Shen, M.; Wang, X. S.; Cao, R. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability. ChemSusChem 2014, 7, 2647–2653.

[57]

Wang, D. M.; Zhang, J.; Li, G. H.; Yuan, J. Q.; Li, J. T.; Huo, Q. S.; Liu, Y. L. Mesoporous hexanuclear copper cluster-based metal-organic framework with highly selective adsorption of gas and organic dye molecules. ACS Appl. Mater. Interfaces 2018, 10, 31233–31239.

[58]

Liu, H.; Li, B. R.; Zhao, Y. Y.; Kong, C. L.; Zhou, C.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Investigation on a Zr-based metal-organic framework (MOF-801) for the high-performance separation of light alkanes. Chem. Commun. 2021, 57, 13008–13011.

[59]

Li, L.; Wang, X. S.; Liang, J.; Huang, Y. B.; Li, H. F.; Lin, Z. J.; Cao, R. Water-stable anionic metal-organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl. Mater. Interfaces 2016, 8, 9777–9781.

[60]

Liu, B.; Yao, S.; Shi, C.; Li, G. H.; Huo, Q. S.; Liu, Y. L. Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks. Chem. Commun. 2016, 52, 3223–3226.

[61]

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Duttwyler, S.; Xing, H. B. A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem., Int. Ed. 2019, 58, 8145–8150.

[62]

Sun, Q. S.; Yao, S.; Liu, B.; Liu, X. Y.; Li, G. H.; Liu, X. Y.; Liu, Y. L. A novel polyhedron-based metal-organic framework with high performance for gas uptake and light hydrocarbon separation. Dalton Trans. 2018, 47, 5005–5010.

[63]

Yuan, Y. N.; Wu, H. X.; Xu, Y. Z.; Lv, D. F.; Tu, S.; Wu, Y.; Li, Z.; Xia, Q. B. Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chem. Eng. J. 2020, 395, 125057.

[64]

Guo, P. T.; Chang, M.; Yan, T. G.; Li, Y. X.; Liu, D. H. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas. Chin. J. Chem. Eng. 2022, 42, 10–16.

[65]

Ding, M.; Wang, Q.; Cheng, H. T.; Bai, J. F. Synthesis, structure and highly selective C3H8/CH4 and C2H6/CH4 adsorption of a (4,8)-c ternary flu-metal-organic framework based upon both [Sc4O2(COO)8] and [Cu4OCl6] clusters. CrystEngComm 2022, 24, 2388–2392.

[66]

Belmabkhout, Y.; Mouttaki, H.; Eubank, J. F.; Guillerm, V.; Eddaoudi, M. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: Application to methane purification and storage. RSC Adv. 2014, 4, 63855–63859.

[67]

Krishna, R. The maxwell-stefan description of mixture diffusion in nanoporous crystalline materials. Microporous Mesoporous Mater. 2014, 185, 30–50.

[68]

Krishna, R. Methodologies for evaluation of metal-organic frameworks in separation applications. RSC Adv. 2015, 5, 52269–52295.

[69]

Krishna, R. Screening metal-organic frameworks for mixture separations in fixed-bed adsorbers using a combined selectivity/capacity metric. RSC Adv. 2017, 7, 35724–35737.

[70]

Krishna, R. Methodologies for screening and selection of crystalline microporous materials in mixture separations. Sep. Purif. Technol. 2018, 194, 281–300.

[71]

Krishna, R. Metrics for evaluation and screening of metal-organic frameworks for applications in mixture separations. ACS Omega 2020, 5, 16987–17004.

File
12274_2023_5634_MOESM1_ESM.pdf (4.4 MB)
12274_2023_5634_MOESM2_ESM.txt (6.5 KB)
12274_2023_5634_MOESM3_ESM.txt (10.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2022
Revised: 13 February 2023
Accepted: 02 March 2023
Published: 20 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Nos. 21871105, 21975096, and 21501064). We thank the staff at BL17B1 beamline of the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), for providing technical support in X-ray diffraction data collection. We also thank Professor Rajamani Krishna from University of Amsterdam for the breakthrough calculations.

Return