Journal Home > Volume 16 , Issue 7

Armchair graphene nanoribbons (AGNRs) with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps. AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface. However, it is time-consuming and not suitable for large-scale production. AGNRs can also be grown by transforming precursor molecules inside single-walled carbon nanotubes (SWCNTs) via furnace annealing, but the obtained AGNRs are normally twisted. In this work, microwave heating is applied for transforming precursor molecules into AGNRs. The fast heating process allows synthesizing the AGNRs in seconds. Several different molecules were successfully transformed into AGNRs, suggesting that it is a universal method. More importantly, as demonstrated by Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy and theoretical calculations, less twisted AGNRs are synthesized by the microwave heating than the furnace annealing. Our results reveal a route for rapid production of AGNRs in large scale, which would benefit future applications in novel AGNRs-based semiconductor devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microwave heating as a universal method to transform confined molecules into armchair graphene nanoribbons

Show Author's information Haoyuan Zhang1,§Yingzhi Chen1,§Kunpeng Tang1,§Ziheng Lin1Xuan Li1Hongwei Zhang1Yifan Zhang1,2Chi Ho Wong3Chi Wah Leung4Chee Leung Mak4Yuan Hu5Weili Cui1( )Kecheng Cao5( )Lei Shi1( )
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangdong Province Key Lab of Display Material and Technology, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou 313000, China
Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong 999077, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China

§ Haoyuan Zhang, Yingzhi Chen, and Kunpeng Tang contributed equally to this work.

Abstract

Armchair graphene nanoribbons (AGNRs) with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps. AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface. However, it is time-consuming and not suitable for large-scale production. AGNRs can also be grown by transforming precursor molecules inside single-walled carbon nanotubes (SWCNTs) via furnace annealing, but the obtained AGNRs are normally twisted. In this work, microwave heating is applied for transforming precursor molecules into AGNRs. The fast heating process allows synthesizing the AGNRs in seconds. Several different molecules were successfully transformed into AGNRs, suggesting that it is a universal method. More importantly, as demonstrated by Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy and theoretical calculations, less twisted AGNRs are synthesized by the microwave heating than the furnace annealing. Our results reveal a route for rapid production of AGNRs in large scale, which would benefit future applications in novel AGNRs-based semiconductor devices.

Keywords: Raman spectroscopy, microwave heating, single-walled carbon nanotubes (SWCNTs), armchair graphene nanoribbons (AGNRs)

References(39)

[1]

Dutta, S.; Pati, S. K. Novel properties of graphene nanoribbons: A review. J. Mater. Chem. 2010, 20, 8207–8223.

[2]

Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

[3]

Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; De Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114.

[4]

Wei, D. C.; Xie, L. F.; Lee, K. K.; Hu, Z. B.; Tan, S. H.; Chen, W.; Sow, C. H.; Chen, K. Q.; Liu, Y. Q.; Wee, A. T. S. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nat. Commun. 2013, 4, 1374.

[5]

Freitag, M.; Low, T.; Zhu, W. J.; Yan, H. G.; Xia, F. N.; Avouris, P. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 2013, 4, 1951.

[6]

Lone, S.; Bhardwaj, A.; Pandit, A. K.; Gupta, S.; Mahajan, S. A review of graphene nanoribbon field-effect transistor structures. J. Electron. Mater. 2021, 50, 3169–3186.

[7]

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

[8]

Kuzmany, H.; Shi, L.; Martinati, M.; Cambré, S.; Wenseleers, W.; Kürti, J.; Koltai, J.; Kukucska, G.; Cao, K. C.; Kaiser, U. et al. Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon 2021, 171, 221–229.

[9]

Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

[10]

Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

[11]

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

[12]

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

[13]

Wang, X. Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovannantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.; Ruffieux, P.; Feng, X. L. et al. Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 9104–9107.

[14]

Yoon, K. Y.; Dong, G. B. Liquid-phase bottom-up synthesis of graphene nanoribbons. Mater. Chem. Front. 2020, 4, 29–45.

[15]

Chen, Z. P.; Zhang, W.; Palma, C. A.; Lodi Rizzini, A.; Liu, B. L.; Abbas, A.; Richter, N.; Martini, L.; Wang, X. Y.; Cavani, N. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 2016, 138, 15488–15496.

[16]

Lyu, B.; Chen, J. J.; Lou, S.; Li, C.; Qiu, L.; Ouyang, W. G.; Xie, J. X.; Mitchell, I.; Wu, T. Y.; Deng, A. L. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 2022, 34, 2200956.

[17]

Chamberlain, T. W.; Biskupek, J.; Rance, G. A.; Chuvilin, A.; Alexander, T. J.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 2012, 6, 3943–3953.

[18]

Talyzin, A. V.; Anoshkin, I. V.; Krasheninnikov, A. V.; Nieminen, R. M.; Nasibulin, A. G.; Jiang, H.; Kauppinen, E. I. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 2011, 11, 4352–4356.

[19]

Zhang, Y. F.; Cao, K. C.; Saito, T.; Kataura, H.; Kuzmany, H.; Pichler, T.; Kaiser, U.; Yang, G. W.; Shi, L. Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Res. 2022, 15, 1709–1714.

[20]

Milotti, V.; Berkmann, C.; Laranjeira, J.; Cui, W. L.; Cao, K. C.; Zhang, Y. F.; Kaiser, U.; Yanagi, K.; Melle-Franco, M.; Shi, L. et al. Unravelling the complete Raman response of graphene nanoribbons discerning the signature of edge passivation. Small Methods 2022, 6, 2200110.

[21]
Rybkovskiy, D. V.; Koroteev, V. O.; Impellizzeri, A.; Vorfolomeeva, A. A.; Gerasimov, E. Y.; Okotrub, A. V.; Chuvilin, A.; Bulusheva, L. G.; Ewels, C. P. “Missing” one-dimensional red-phosphorus chains encapsulated within single-walled carbon nanotubes. ACS Nano 2022, 16, 6002–6012.
[22]

Fujimori, T.; Dos Santos, R. B.; Hayashi, T.; Endo, M.; Kaneko, K.; Tománek, D. Formation and properties of selenium double-helices inside double-wall carbon nanotubes: Experiment and theory. ACS Nano 2013, 7, 5607–5613.

[23]

Li, G. H.; Fu, C. Y.; Oviedo, M. B.; Chen, M. G.; Tian, X. J.; Bekyarova, E.; Itkis, M. E.; Wong, B. M.; Guo, J. C.; Haddon, R. C. Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 40–43.

[24]

Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Young Hong, S. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

[25]

Shi, L.; Rohringer, P.; Suenaga, K.; Niimi, Y.; Kotakoski, J.; Meyer, J. C.; Peterlik, H.; Wanko, M.; Cahangirov, S.; Rubio, A. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 2016, 15, 634–639.

[26]

Larson, D. T.; Kaxiras, E. Raman spectrum of CrI3: An ab initio study. Phys. Rev. B 2018, 98, 085406.

[27]

Shi, L.; Senga, R.; Suenaga, K.; Kataura, H.; Saito, T.; Paz, A. P.; Rubio, A.; Ayala, P.; Pichler, T. Toward confined carbyne with tailored properties. Nano Lett. 2021, 21, 1096–1101.

[28]

Shi, L.; Wei, J. Q.; Yanagi, K.; Saito, T.; Cao, K. C.; Kaiser, U.; Ayala, P.; Pichler, T. Templated direct growth of ultra-thin double-walled carbon nanotubes. Nanoscale 2018, 10, 21254–21261.

[29]

Merino-Díez, N.; Garcia-Lekue, A.; Carbonell-Sanromà, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sánchez-Portal, D.; Pascual, J. I.; De Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on Au(111). ACS Nano 2017, 11, 11661–11668.

[30]

Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

[31]

Vandescuren, M.; Hermet, P.; Meunier, V.; Henrard, L.; Lambin, P. Theoretical study of the vibrational edge modes in graphene nanoribbons. Phys. Rev. B 2008, 78, 195401.

[32]

Overbeck, J.; Barin, G. B.; Daniels, C.; Perrin, M. L.; Braun, O.; Sun, Q.; Darawish, R.; De Luca, M.; Wang, X. Y.; Dumslaff, T. et al. A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano 2019, 13, 13083–13091.

[33]

Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.

[34]

Zhang, Y. Y.; Zhang, J.; Son, H.; Kong, J.; Liu, Z. F. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 17156–17157.

[35]

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

[36]

Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

[37]

Rosenkranz, N.; Mohr, M.; Thomsen, C. Uniaxial strain in graphene and armchair graphene nanoribbons: An ab initio study. Ann. Phys. 2011, 523, 137–144.

[38]

Chen, C. X.; Wu, J. Z.; Lam, K. T.; Hong, G. S.; Gong, M.; Zhang, B.; Lu, Y.; Antaris, A. L.; Diao, S.; Guo, J. et al. Graphene nanoribbons under mechanical strain. Adv. Mater. 2015, 27, 303–309.

[39]

Senkovskiy, B. V.; Usachov, D. Y.; Fedorov, A. V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N. et al. Boron-doped graphene nanoribbons: Electronic structure and Raman fingerprint. ACS Nano 2018, 12, 7571–7582.

File
12274_2023_5632_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2022
Revised: 11 February 2023
Accepted: 01 March 2023
Published: 20 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by Guangzhou Basic and Applied Basic Research Foundation (No. 202201011790), Open Project of Guangdong Province Key Lab of Display Material and Technology (2020B1212060030), National Natural Science Foundation of China (No. 51902353), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 22lgqb03), and State Key Laboratory of Optoelectronic Materials and Technologies (No. OEMT-2022-ZRC-01). We thank the Department of Applied Physics at The Hong Kong Polytechnic University to provide the ab-initio supports. We also thank the Research Institute for Advanced Manufacturing at The Hong Kong Polytechnic University.

Return