Journal Home > Volume 16 , Issue 10

In this study, a novel three-dimensional (3D)-OMm-Co3O4/SiO2-0.5AP (OMm = ordered macro–meso porous, AP = aluminum phosphate) monolithic catalyst was for the first time constructed successfully with the hierarchical Co-phyllosilicate ultrathin nanosheets growth on the surface of 3D printed ordered macropore–mesoporous SiO2 support. On the one hand, we discovered that the construction of ordered macropore–mesoporous structures is beneficial to the diffusion and adsorption of reactants, intermediates, and products. On the other hand, the formation of hierarchical Co-phyllosilicate ultrathin nanosheets could provide more active Co&+ species, abundant acid sites, and active oxygen. The above factors are in favor of improving the catalytic performance of benzene oxidation, and then a 3D-OMm-Co3O4/SiO2-0.5AP catalyst exhibited the superior catalytic activity. To explore the effect of catalysts structure and morphology, various Co-based catalysts were also constructed. Simultaneously, the 3D-OMm-Co3O4/SiO2-0.5AP catalyst has excellent catalytic performance, water resistance, and thermal stability in the catalytic combustion of benzene due to the strong interactions between Co&+ species and SiO2 in the phyllosilicate. Therefore, this study proposes a new catalyst synthesis method through 3D printing, and presents considerable prospects for the removal of VOCs from industrial applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel 3D printed technology to construct a monolithic ultrathin nanosheets Co3O4/SiO2 catalyst for benzene catalytic combustion

Show Author's information Yuntai Xi1,2Fang Dong1,3( )Xin Xu4Shixing Wu2Zhicheng Tang1( )Jiyi Zhang2( )
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China
Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China

Abstract

In this study, a novel three-dimensional (3D)-OMm-Co3O4/SiO2-0.5AP (OMm = ordered macro–meso porous, AP = aluminum phosphate) monolithic catalyst was for the first time constructed successfully with the hierarchical Co-phyllosilicate ultrathin nanosheets growth on the surface of 3D printed ordered macropore–mesoporous SiO2 support. On the one hand, we discovered that the construction of ordered macropore–mesoporous structures is beneficial to the diffusion and adsorption of reactants, intermediates, and products. On the other hand, the formation of hierarchical Co-phyllosilicate ultrathin nanosheets could provide more active Co&+ species, abundant acid sites, and active oxygen. The above factors are in favor of improving the catalytic performance of benzene oxidation, and then a 3D-OMm-Co3O4/SiO2-0.5AP catalyst exhibited the superior catalytic activity. To explore the effect of catalysts structure and morphology, various Co-based catalysts were also constructed. Simultaneously, the 3D-OMm-Co3O4/SiO2-0.5AP catalyst has excellent catalytic performance, water resistance, and thermal stability in the catalytic combustion of benzene due to the strong interactions between Co&+ species and SiO2 in the phyllosilicate. Therefore, this study proposes a new catalyst synthesis method through 3D printing, and presents considerable prospects for the removal of VOCs from industrial applications.

Keywords: three-dimensional (3D) printing, catalytic oxidation, volatile organic compounds (VOCs), Co-phyllosilicate, ordered porous

References(79)

[1]

Wen, M.; Dong, F.; Yao, J. F.; Tang, Z. C.; Zhang, J. Y. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. J. Catal. 2022, 412, 42–58.

[2]

Chen, J.; Chen, X.; Chen, X.; Xu, W. J.; Xu, Z.; Jia, H. P.; Chen, J. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl. Catal. B: Environ. 2018, 224, 825–835.

[3]

Li, L.; Liu, S. Q.; Liu, J. X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 2011, 192, 683–690.

[4]

Destaillats, H.; Sleiman, M.; Sullivan, D. P.; Jacquiod, C.; Sablayrolles, J.; Molins, L. Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl. Catal. B: Environ. 2012, 128, 159–170.

[5]

Parmar, G. R.; Rao, N. N. Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 2008, 39, 41–78.

[6]

Luo, Y. J.; Wang, K. C.; Chen, Q. H.; Xu, Y. X.; Xue, H.; Qian, Q. R. Preparation and characterization of electrospun La1−xCexCoOδ: Application to catalytic oxidation of benzene. J. Hazard. Mater. 2015, 296, 17–22.

[7]

Zhang, C. H.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B: Environ. 2014, 148–149, 490–498.

[8]

Wang, X. Y.; Liu, Y.; Zhang, T. H.; Luo, Y. J.; Lan, Z. X.; Zhang, K.; Zuo, J. C.; Jiang, L. L.; Wang, R. H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. 2017, 7, 1626–1636.

[9]

Feng, X. B.; Chen, C. W.; He, C.; Chai, S. N.; Yu, Y. K.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. J. Hazard. Mater. 2020, 383, 121143.

[10]

Solsona, B.; Garcia, T.; Aylón, E.; Dejoz, A. M.; Vázquez, I.; Agouram, S.; Davies, T. E.; Taylor, S. H. Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chem. Eng. J. 2011, 175, 271–278.

[11]

Wang, C.; Zhang, C. H.; Hua, W. C.; Guo, Y. L.; Lu, G. Z.; Gil, S.; Giroir-Fendler, A. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem. Eng. J. 2017, 315, 392–402.

[12]

Wang, Y. F.; Zhang, C. B.; Yu, Y. B.; Yue, R. L.; He, H. Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene. Catal. Today 2015, 242, 294–299.

[13]

Liu, Y. X.; Dai, H. X.; Deng, J. G.; Xie, S. H.; Yang, H. G.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. S. Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J. Catal. 2014, 309, 408–418.

[14]

Liotta, L. F.; Wu, H. J.; Pantaleo, G.; Venezia, A. M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102.

[15]

Li, J. J.; Xu, X. Y.; Hao, Z. P.; Zhao, W. Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene. J. Porous Mater. 2008, 15, 163–169.

[16]

Araújo, R. S.; Azevedo, D. C. S.; Rodríguez-Castellón, E.; Jiménez-López, A.; Cavalcante, C. Jr. Al and Ti-containing mesoporous molecular sieves: Synthesis, characterization and redox activity in the anthracene oxidation. J. Mol. Catal. A: Chem. 2008, 281, 154–163.

[17]

Todorova, S.; Pârvulescu, V.; Kadinov, G.; Tenchev, K.; Somacescu, S.; Su, B. L. Metal states in cobalt-and cobalt-vanadium-modified MCM-41 mesoporous silica catalysts and their activity in selective hydrocarbons oxidation. Micropor. Mesopor. Mater. 2008, 113, 22–30.

[18]

Szegedi, Á.; Popova, M.; Minchev, C. Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation. J. Mater. Sci. 2009, 44, 6710–6716.

[19]

Kim, D. J.; Dunn, B. C.; Cole, P.; Turpin, G.; Ernst, R. D.; Pugmire, R. J.; Kang, M.; Kim, J. M.; Eyring, E. M. Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chem. Commun. 2005, 11, 1462–1464.

[20]

Katsoulidis, A. P.; Petrakis, D. E.; Armatas, G. S.; Trikalitis, P. N.; Pomonis, P. J. Ordered mesoporous CoOx/MCM-41 materials exhibiting long-range self-organized nanostructured morphology. Micropor. Mesopor. Mater. 2006, 92, 71–80.

[21]

Dong, F.; Han, W. G.; Han, W. L.; Tang, Z. C. Assembling core–shell SiO2@NiaCobOx nanotube decorated by hierarchical NiCo-phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs. Appl. Catal. B: Environ. 2022, 315, 121524.

[22]

Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

[23]

Kong, X.; Zhu, Y. F.; Zheng, H. Y.; Li, X. Q.; Zhu, Y. L.; Li, Y. W. Ni nanoparticles inlaid nickel phyllosilicate as a metal–acid bifunctional catalyst for low-temperature hydrogenolysis reactions. ACS Catal. 2015, 5, 5914–5920.

[24]

Kim, J. S.; Park, I.; Jeong, E. S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K. Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 2017, 29, 1606893.

[25]

Wen, M.; Dong, F.; Tang, Z. C.; Zhang, J. Y. In situ confined encapsulation strategy for construction of Co3O4@SiO2 catalyst for the efficient elimination of toluene. Micropor. Mesopor. Mater. 2021, 322, 111156.

[26]

Mitchell, S.; Michels, N. L.; Kunze, K.; Pérez-Ramírez, J. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nat. Chem. 2012, 4, 825–831.

[27]

Freiding, J.; Kraushaar-Czarnetzki, B. Novel extruded fixed-bed MTO catalysts with high olefin selectivity and high resistance against coke deactivation. Appl. Catal. A: Gen. 2011, 391, 254–260.

[28]

Williams, J. L. Monolith structures, materials, properties and uses. Catal. Today 2001, 69, 3–9.

[29]

Díaz-Marta, A. S.; Tubío, C. R.; Carbajales, C.; Fernández, C.; Escalante, L.; Sotelo, E.; Guitián, F.; Barrio, V. L.; Gil, A.; Coelho, A. Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 2018, 8, 392–404.

[30]
Crawley, M. L.; Trost, B. M. Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective; John Wiley & Sons, Inc. : Hoboken, 2012.
DOI
[31]

Ciriminna, R.; Carà, P. D.; Sciortino, M.; Pagliaro, M. Catalysis with doped sol-gel silicates. Adv. Synth. Catal. 2011, 353, 677–687.

[32]

Xu, X.; Zhang, M. X.; Jiang, P.; Liu, D. S.; Wang, Y. X.; Xu, X.; Ji, Z. Y.; Jia, X.; Wang, H. Z.; Wang, X. L. Direct ink writing of Pd-decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceram. Int. 2022, 48, 10843–10851.

[33]

Muth, J. T.; Dixon, P. G.; Woish, L.; Gibson, L. J.; Lewis, J. A. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl. Acad. Sci. USA 2017, 114, 1832–1837.

[34]

Liu, D. S.; Jiang, P.; Li, X. C.; Liu, J. X.; Zhou, L. C.; Wang, X. L.; Zhou, F. 3D printing of metal–organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 2020, 397, 125392.

[35]

Liu, M.; Sun, J. R.; Chen, Q. F. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A: Phys. 2009, 151, 42–45.

[36]

Quintanilla, A.; Casas, J. A.; Miranzo, P.; Osendi, M. I.; Belmonte, M. 3D-printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Appl. Catal. B: Environ. 2018, 235, 246–255.

[37]

Mu, Z.; Li, J. J.; Tian, H.; Hao, Z. P.; Qiao, S. Z. Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Mater. Res. Bull. 2008, 43, 2599–2606.

[38]

Wang, X. Y.; Zuo, J. C.; Luo, Y. J.; Jiang, L. L. New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation. Appl. Surf. Sci. 2017, 396, 95–101.

[39]

Zuo, S. F.; Liu, F. J.; Tong, J.; Qi, C. Z. Complete oxidation of benzene with cobalt oxide and ceria using the mesoporous support SBA-16. Appl. Catal. A: Gen. 2013, 467, 1–6.

[40]

Han, D. W.; Xiao, M. L.; Wei, Y. C.; Yang, X. Q.; Guo, Y. C.; Ma, L. J.; Yu, X. L.; Ge, M. F. Enhanced sulfur resistance by constructing MnOx-Co3O4 interface on Ni foam in the removal of benzene. Environ. Sci.: Nano 2023, 10, 284–294.

[41]

Xiang, Y.; Zhu, Y.; Lu, J.; Zhu, C. Z.; Zhu, M. Y.; Xie, Q. Q.; Chen, T. H. Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: Preparation, characterization and its catalytic properties. Solid State Sci. 2019, 93, 79–86.

[42]

Yao, J. F.; Dong, F.; Xu, X.; Wen, M.; Ji, Z. Y.; Feng, H.; Wang, X. L.; Tang, Z. C. Rational design and construction of monolithic ordered mesoporous Co3O4@SiO2 catalyst by a novel 3D printed technology for catalytic oxidation of toluene. ACS Appl. Mater. Interfaces 2022, 14, 22170–22185.

[43]

Zhang, L.; Yang, J. W.; Wang, A. Q.; Chai, S. H.; Guan, J.; Nie, L. F.; Fan, G. J.; Han, N.; Chen, Y. F. High performance ozone decomposition spinel (Mn,Co)3O4 catalyst accelerating the rate-determining step. Appl. Catal. B: Environ. 2022, 303, 120927.

[44]

Scott, S. L.; Gunnoe, T. B.; Fornasiero, P.; Crudden, C. M. To err is human; to reproduce takes time. ACS Catal. 2022, 12, 3644–3650.

[45]

Lefevere, J.; Protasova, L.; Mullens, S.; Meynen, V. 3D-printing of hierarchical porous ZSM-5: The importance of the binder system. Mater. Des. 2017, 134, 331–341.

[46]

Dong, F.; Han, W. G.; Guo, Y.; Han, W. L.; Tang, Z. C. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs. Chem. Eng. J. 2021, 405, 126948.

[47]

Wang, H.; Chen, C. L.; Zhang, Y. X.; Peng, L. X.; Ma, S.; Yang, T.; Guo, H. H.; Zhang, Z. D.; Su, D. S.; Zhang, J. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion. Nat. Commun. 2015, 6, 7181.

[48]

Sun, S. J.; Gao, Q. M.; Wang, H. L.; Zhu, J. K.; Guo, H. L. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Appl. Catal. B: Environ. 2010, 97, 284–291.

[49]

Díaz-Marta, A. S.; Yáñez, S.; Tubio, C. R.; Barrio, V. L.; Piñeiro, Y.; Pedrido, R.; Rivas, J.; Amorín, M.; Guitián, F.; Coelho, A. Multicatalysis combining 3D-printed devices and magnetic nanoparticles in one-pot reactions: Steps forward in compartmentation and recyclability of catalysts. ACS Appl. Mater. Interfaces 2019, 11, 25283–25294.

[50]

Yang, Q. X.; Lu, R.; Ren, S. S.; Zhou, H. M.; Wu, Q. X.; Zhen, Y. Y.; Chen, Z. J.; Fang, S. M. Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. J. Solid State Chem. 2018, 265, 200–207.

[51]

Peng, M. W.; Shi, D. L.; Sun, Y. H.; Cheng, J.; Zhao, B.; Xie, Y. M.; Zhang, J. C.; Guo, W.; Jia, Z.; Liang, Z. Q. et al. 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 2020, 32, 1908201.

[52]

Ghasemzadeh, M. A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M. H. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by Co3O4@SiO2 core−shell nanoparticles under ultrasound irradiation. Comb. Chem. High Throughput Screen. 2016, 19, 592–601.

[53]

Kucharczyk, S.; Zajac, M.; Stabler, C.; Thomsen, R. M.; Haha, M. B.; Skibsted, J.; Deja, J. Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses. Cem. Concr. Res. 2019, 120, 77–91.

[54]

Gu, F.; Li, C. Z.; Hu, Y. J.; Zhang, L. Synthesis and optical characterization of Co3O4 nanocrystals. J. Cryst. Growth 2007, 304, 369–373.

[55]

Mamontov, E.; Egami, T.; Brezny, R.; Koranne, M.; Tyagi, S. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 2000, 104, 11110–11116.

[56]

Cheng, Q. P.; Tian, Y.; Lyu, S. S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L. H.; Zhang, J.; Zheng, L. R. et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat. Commun. 2018, 9, 3250.

[57]

Ward, M. R.; Boyes, E. D.; Gai, P. L. In situ aberration-corrected environmental TEM: Reduction of model Co3O4 in H2 at the atomic level. ChemCatChem 2013, 5, 2655–2661.

[58]

Song, W. Q.; Poyraz, A. S.; Meng, Y. T.; Ren, Z.; Chen, S. Y.; Suib, S. L. Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chem. Mater. 2014, 26, 4629–4639.

[59]

Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.; Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.; Khodakov, A. Y. Nanoreactors: An efficient tool to control the chain-length distribution in Fischer–Tropsch synthesis. ACS Catal. 2016, 6, 1785–1792.

[60]

Sun, X. H.; Suarez, A. I. O.; Meijerink, M.; Van Deelen, T.; Ould-Chikh, S.; Zečević, J.; De Jong, K. P.; Kapteijn, F.; Gascon, J. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.

[61]

Yan, N.; Chen, Q. W.; Wang, F.; Wang, Y.; Zhong, H.; Hu, L. High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 2013, 1, 637–643.

[62]

Li, B. F.; Wei, F.; Su, B.; Guo, Z.; Ding, Z. X.; Yang, M. Q.; Wang, S. B. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater. Today Energy 2022, 24, 100943.

[63]

Li, Q.; Odoom-Wubah, T.; Zhou, Y. P.; Mulka, R.; Zheng, Y. M.; Huang, J. L.; Sun, D. H.; Li, Q. B. Coral-like CoMnOx as a highly active catalyst for benzene catalytic oxidation. Ind. Eng. Chem. Res. 2019, 58, 2882–2890.

[64]

Mo, S. P.; Zhang, Q.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q. et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B: Environ. 2020, 264, 118464.

[65]

Hu, Z.; Qiu, S.; You, Y.; Guo, Y.; Guo, Y. L.; Wang, L.; Zhan, W. C.; Lu, G. Z. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Appl. Catal. B: Environ. 2018, 225, 110–120.

[66]

Ma, Y.; Wang, L.; Ma, J. Z.; Wang, H. H.; Zhang, C. B.; Deng, H.; He, H. Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: The role of surface twofold-coordinate lattice oxygen (O2f). ACS Catal. 2021, 11, 6614–6625.

[67]

Soghrati, E.; Ong, T. K. C.; Poh, C. K.; Kawi, S.; Borgna, A. Zeolite-supported nickel phyllosilicate catalyst for C-O hydrogenolysis of cyclic ethers and polyols. Appl. Catal. B: Environ. 2018, 235, 130–142.

[68]

Fang, J. X.; Huang, Z. W.; Wang, L. P.; Guo, S. F.; Li, M. X.; Liu, Y. C.; Chen, J. M.; Wu, X. M.; Shen, H. Z.; Zhao, H. W. et al. Activation of oxygen on the surface of the Co3O4 catalyst by single-atom Ag toward efficient catalytic benzene combustion. J. Phys. Chem. C 2022, 126, 5873–5884.

[69]

Zhao, X. T.; Xu, D. J.; Wang, Y. N.; Zheng, Z. W.; Li, K.; Zhang, Y. R.; Zhan, R.; Lin, H. Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. J. Hazard. Mater. 2021, 407, 124349.

[70]

Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650–659.

[71]

Hou, J. C.; Hu, J. L.; Chang, L. P.; Wang, J. C.; Zeng, Z. Q.; Wu, D. X.; Cui, X. M.; Bao, W. R.; Yao, J. X. Synergistic effects between highly dispersed CuOx and the surface Cu-[Ox]-Ce structure on the catalysis of benzene combustion. J. Catal. 2022, 408, 9–23.

[72]

Lichtenberger, J.; Amiridis, M. D. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal. 2004, 223, 296–308.

[73]

Li, L.; Yang, Q. L.; Wang, D.; Peng, Y.; Yan, J. L.; Li, J. H.; Crittenden, J. Facile synthesis λ-MnO2 spinel for highly effective catalytic oxidation of benzene. Chem. Eng. J. 2021, 421, 127828.

[74]

Li, J. J.; Yu, E. Q.; Cai, S. C.; Chen, X.; Chen, J.; Jia, H. P.; Xu, Y. J. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl. Catal. B: Environ. 2019, 240, 141–152.

[75]

Xue, L.; Zhang, C. B.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B: Environ. 2007, 75, 167–174.

[76]

Liu, X. L.; Zeng, J. L.; Shi, W. B.; Wang, J.; Zhu, T. Y.; Chen, Y. F. Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism. Catal. Sci. Technol. 2017, 7, 213–221.

[77]

Kang, S. Y.; Wang, M.; Zhu, N.; Wang, C. Y.; Deng, H.; He, H. Significant enhancement in water resistance of Pd/Al2O3 catalyst for benzene oxidation by Na addition. Chin. Chem. Lett. 2019, 30, 1450–1454.

[78]

Odoom-Wubah, T.; Li, Q.; Adilov, I.; Huang, J. L.; Li, Q. B. Towards efficient Pd/Mn3O4 catalyst with enhanced acidic sites and low temperature reducibility for benzene abatement. Mol. Catal. 2019, 477, 110558.

[79]

Zhong, J. P.; Zeng, Y. K.; Zhang, M. Y.; Feng, W. H.; Xiao, D. R.; Wu, J. L.; Chen, P. R.; Fu, M. L.; Ye, D. Q. Toluene oxidation process and proper mechanism over Co3O4 nanotubes: Investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS. Chem. Eng. J. 2020, 397, 125375.

File
12274_2023_5631_MOESM1_ESM.pdf (6.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2023
Revised: 23 February 2023
Accepted: 28 February 2023
Published: 18 May 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the LICP Cooperation Foundation for Young Scholars (No. HZJJ21-02), the National Natural Science Foundation of China (Nos. 52070182 and 51908535), the DNL Cooperation Found, Chinese Academy of Sciences (No. DNL202004), Province Natural Science Foundation of GanSu (Nos. 20JR10RA053 and 20JR10RA046), and Major Program of the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (No. ZYFZFX-10).

Return