Journal Home > Volume 16 , Issue 7

Layered lithium transition metal oxide (LTMO) cathode materials have attracted much attention for lithium-ion batteries and are shining in the current market. Establishing a clear structure–performance relationship is necessary for the performance improvement of LTMO cathode materials. The combination of synchrotron X-ray diffraction (XRD) with high intensity and XRD Rietveld refinement is powerful for revealing the structural characteristics of LTMO cathode materials. This review summarizes the application of high energy XRD and Rietveld refinement in LTMO cathode materials, including the brief introduction of synchrotron XRD and Rietveld refinement and their applications in understanding the structural evolution related to the synthetic, thermal runaway, cycling, and high-rate charge/discharge process of LTMO cathode materials. Synchrotron XRD can provide insights into the intermediates and reaction paths in the synthesis process, the origin of thermal runaway, the mechanism of structural decay during cycles, and the structural evolution during high-rate charging/discharging. Future works should focus on the development of higher intensity X-rays to gain more in-depth insights into the intrinsic relationship between their structural characteristics and properties.


menu
Abstract
Full text
Outline
About this article

Application of high energy X-ray diffraction and Rietveld refinement in layered lithium transition metal oxide cathode materials

Show Author's information Zhuo YangYong LuXiaomeng LiuFujun LiJun Chen( )
Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

Abstract

Layered lithium transition metal oxide (LTMO) cathode materials have attracted much attention for lithium-ion batteries and are shining in the current market. Establishing a clear structure–performance relationship is necessary for the performance improvement of LTMO cathode materials. The combination of synchrotron X-ray diffraction (XRD) with high intensity and XRD Rietveld refinement is powerful for revealing the structural characteristics of LTMO cathode materials. This review summarizes the application of high energy XRD and Rietveld refinement in LTMO cathode materials, including the brief introduction of synchrotron XRD and Rietveld refinement and their applications in understanding the structural evolution related to the synthetic, thermal runaway, cycling, and high-rate charge/discharge process of LTMO cathode materials. Synchrotron XRD can provide insights into the intermediates and reaction paths in the synthesis process, the origin of thermal runaway, the mechanism of structural decay during cycles, and the structural evolution during high-rate charging/discharging. Future works should focus on the development of higher intensity X-rays to gain more in-depth insights into the intrinsic relationship between their structural characteristics and properties.

Keywords: Rietveld refinement, lithium-ion batteries, transition metal oxide, synchrotron X-ray diffraction, layered cathode materials

References(101)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[3]

Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K. Brief history of early lithium-battery development. Materials 2020, 13, 1884.

[4]

Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[5]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[6]

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

[7]

Ye, Z. C.; Qiu, L.; Yang, W.; Wu, Z. G.; Liu, Y. X.; Wang, G. K.; Song, Y.; Zhong, B. H.; Guo, X. D. Nickel-rich layered cathode materials for lithium-ion batteries. Chem.—Eur. J. 2021, 27, 4249–4269.

[8]

Huang, B.; Cheng, L.; Li, X. Z.; Zhao, Z. W.; Yang, J. W.; Li, Y. W.; Pang, Y. Y.; Cao, G. Z. Layered cathode materials: Precursors, synthesis, microstructure, electrochemical properties, and battery performance. Small 2022, 18, 2107697.

[9]

Jamil, S.; Wang, G.; Fasehullah, M.; Xu, M. W. Challenges and prospects of nickel-rich layered oxide cathode material. J. Alloys Compd. 2022, 909, 164727.

[10]

Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

[11]

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672.

[12]

Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

[13]

Zhu, W.; Liu, D. Q.; Paolella, A.; Gagnon, C.; Gariépy, V.; Vijh, A.; Zaghib, K. Application of operando X-ray diffraction and Raman spectroscopies in elucidating the behavior of cathode in lithium-ion batteries. Front. Energy Res. 2018, 6, 66.

[14]

Lo, B. T. W.; Ye, L.; Tsang, S. C. E. The contribution of synchrotron X-ray powder diffraction to modern zeolite applications: A mini-review and prospects. Chem 2018, 4, 1778–1808.

[15]

Lin, F.; Liu, Y. J.; Yu, X. Q.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C. X.; Weng, T. C. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 2017, 117, 13123–13186.

[16]

Rietveld, H. M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967, 22, 151–152.

[17]

Malmros, G.; Thomas, J. O. Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J. Appl. Cryst. 1977, 10, 7–11.

[18]

Tlamsamania, D.; Ait-Mouha, M.; Slassi, S.; Khaddam, Y.; Zuluaga, D. L.; Yamni, K. Quantitative phase analysis of anhydrous clinker Portland using Rietveld method. Rev. Inorg. Chem. 2023, 43, 189–199.

[19]

Bak, S. M.; Shadike, Z.; Lin, R. Q.; Yu, X. Q.; Yang, X. Q. In-situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater 2018, 10, 563–580.

[20]

Qian, G. N.; Wang, J. Y.; Li, H.; Ma, Z. F.; Pianetta, P.; Li, L. S.; Yu, X. Q.; Liu, Y. J. Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. Natl. Sci. Rev. 2022, 9, nwab146.

[21]

Malik, M.; Chan, K. H.; Azimi, G. Review on the synthesis of LiNixMnyCo1−xyO2 (NMC) cathodes for lithium-ion batteries. Mater. Today Energy 2022, 28, 101066.

[22]

Xiang, J. W.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L. X.; Xu, H. H.; Huang, Y. H. Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 2022, 34, 2200912.

[23]

He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.

[24]

Hu, E. Y.; Wang, X. L.; Yu, X. Q.; Yang, X. Q. Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge–discharge cycling and heating. Acc. Chem. Res. 2018, 51, 290–298.

[25]

Xu, J.; Lin, F.; Doeff, M. M.; Tong, W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 2017, 5, 874–901.

[26]

Kang, K.; Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 2006, 74, 094105.

[27]

Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics 1994, 69, 212–221.

[28]

You, B. Z.; Wang, Z. X.; Shen, F.; Chang, Y. J.; Peng, W. J.; Li, X. H.; Guo, H. J.; Hu, Q. Y.; Deng, C. W.; Yang, S. et al. Research progress of single-crystal nickel-rich cathode materials for lithium ion batteries. Small Methods 2021, 5, 2100234.

[29]

Duan, Y. D.; Yang, L. Y.; Zhang, M. J.; Chen, Z. H.; Bai, J. M.; Amine, K.; Pan, F.; Wang, F. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides. J. Mater. Chem. A 2019, 7, 513–519.

[30]

Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 191, 89, 248–277.

[31]

Mai, Z. H. The discovery of X-ray diffraction by crystals and its great impact on science. Physics 2012, 41, 721–726.

[32]

Xia, M. T.; Liu, T. T.; Peng, N.; Zheng, R. T.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Shui, M.; Shu, J. Lab-scale in-situ X-ray diffraction technique for different battery systems: Designs, applications, and perspectives. Small Methods 2019, 3, 1900119.

[33]

Reimers, J. N.; Dahn, J. R. Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091–2097.

[34]

Snigireva, I.; Snigirev, A. X-Ray microanalytical techniques based on synchrotron radiation. J. Environ. Monit. 2006, 8, 33–42.

[35]

Thompson, P.; Cox, D. E.; Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 1987, 20, 79–83.

[36]

Zhu, L.; Fu, L.; Zhou, K. X.; Yang, L. X.; Tang, Z.; Sun, D.; Tang, Y. G.; Li, Y. X.; Wang, H. Y. Engineering crystal orientation of cathode for advanced lithium-ion batteries: A minireview. Chem. Rec. 2022, 22, e202200128.

[37]

Martinolich, A. J.; Neilson, J. R. Toward reaction-by-design: Achieving kinetic control of solid state chemistry with metathesis. Chem. Mater. 2017, 29, 479–489.

[38]

Weber, R.; Li, H. Y.; Chen, W. F.; Kim, C. Y.; Plucknett, K.; Dahn, J. R. In-situ XRD studies during synthesis of single-crystal LiNiO2, LiNi0.975Mg0.025O2, and LiNi0.95Al0.05O2 cathode materials. J. Electrochem. Soc. 2020, 167, 100501.

[39]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[40]

Hua, W. B.; Yang, X. X.; Casati, N. P. M.; Liu, L. J.; Wang, S. N.; Baran, V.; Knapp, M.; Ehrenberg, H.; Indris, S. Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides. eScience 2022, 2, 183–191.

[41]

Qian, G. N.; Huang, H.; Hou, F. C.; Wang, W. N.; Wang, Y.; Lin, J. H.; Lee, S. J.; Yan, H. F.; Chu, Y. S.; Pianetta, P. et al. Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide. Nano Energy 2021, 84, 105926.

[42]

Bai, J. M.; Sun, W. H.; Zhao, J. Q.; Wang, D. W.; Xiao, P. H.; Ko, J. Y. P.; Huq, A.; Ceder, G.; Wang, F. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 2020, 32, 9906–9913.

[43]

Zhao, J. Q.; Zhang, W.; Huq, A.; Misture, S. T.; Zhang, B. L.; Guo, S. M.; Wu, L. J.; Zhu, Y. M.; Chen, Z. H.; Amine, K. et al. In-situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv. Energy Mater. 2017, 7, 1601266.

[44]

Wang, S. N.; Hua, W. B.; Missyul, A.; Darma, M. S. D.; Tayal, A.; Indris, S.; Ehrenberg, H.; Liu, L. J.; Knapp, M. Kinetic control of long-range cationic ordering in the synthesis of layered Ni-rich oxides. Adv. Funct. Mater. 2021, 31, 2009949.

[45]

Wang, D. W.; Kou, R. H.; Ren, Y.; Sun, C. J.; Zhao, H.; Zhang, M. J.; Li, Y.; Huq, A.; Ko, J. Y. P.; Pan, F. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 2017, 29, 1606715.

[46]

Purwanto, A.; Yudha, C. S.; Ubaidillah, U.; Widiyandari, H.; Ogi, T.; Haerudin, H. NCA cathode material: Synthesis methods and performance enhancement efforts. Mater. Res. Express 2018, 5, 122001.

[47]

Shi, Y.; Zhang, M. H.; Fang, C. C.; Meng, Y. S. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J. Power Sources 2018, 394, 114–121.

[48]

Tariq, H. A.; Abraham, J. J.; Shakoor, R. A.; Al-Qaradawi, S.; Abdul Karim, M. R.; Chaudhry, U. Synthesis of lithium manganese oxide nanocomposites using microwave-assisted chemical precipitation technique and their performance evaluation in lithium-ion batteries. Energy Storage 2020, 2, e202.

[49]

Yang, G. J.; Park, S. J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials 2019, 12, 1177.

[50]

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Kar, K. K. Microwave as a tool for synthesis of carbon-based electrodes for energy storage. ACS Appl. Mater. Interfaces 2022, 14, 20306–20325.

[51]

Zhang, M. J.; Duan, Y. D.; Yin, C.; Li, M. F.; Zhong, H.; Dooryhee, E.; Xu, K.; Pan, F.; Wang, F.; Bai, J. M. Ultrafast solid–liquid intercalation enabled by targeted microwave energy delivery. Sci. Adv. 2020, 6, eabd9472.

[52]

Liu, X.; Ren, D. S.; Hsu, H.; Feng, X. N.; Xu, G. L.; Zhuang, M. H.; Gao, H.; Lu, L. G.; Han, X. B.; Chu, Z. Y. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047–2064.

[53]

Zheng, J. X.; Liu, T. C.; Hu, Z. X.; Wei, Y.; Song, X. H.; Ren, Y.; Wang, W. D.; Rao, M. M.; Lin, Y.; Chen, Z. H. et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 2016, 138, 13326–13334.

[54]

Shurtz, R. C.; Hewson, J. C. Review—Materials science predictions of thermal runaway in layered metal–oxide cathodes: A review of thermodynamics. J. Electrochem. Soc. 2020, 167, 090543.

[55]

Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.

[56]

Nam, K. W.; Yoon, W. S.; Yang, X. Q. Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD. J. Power Sources 2009, 189, 515–518.

[57]

Zhitao, E.; Guo, H. J.; Yan, G. C.; Wang, J. X.; Feng, R. K.; Wang, Z. X.; Li, X. H. Evolution of the morphology, structural, and thermal stability of LiCoO2 during overcharge. J. Energy Chem. 2021, 55, 524–532.

[58]

Bak, S. M.; Hu, E. Y.; Zhou, Y. N.; Yu, X. Q.; Senanayake, S. D.; Cho, S. J.; Kim, K. B.; Chung, K. Y.; Yang, X. Q.; Nam, K. W. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in-situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 22594–22601.

[59]

Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

[60]

Geldasa, F. T.; Kebede, M. A.; Shura, M. W.; Hone, F. G. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: A review. RSC Adv. 2022, 12, 5891–5909.

[61]

Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.

[62]

Wu, L. J.; Nam, K. W.; Wang, X. J.; Zhou, Y. N.; Zheng, J. C.; Yang, X. Q.; Zhu, Y. M. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem. Mater. 2011, 23, 3953–3960.

[63]

Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y. N. N.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in-situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.

[64]

Lipson, A. L.; Durham, J. L.; LeResche, M.; Abu-Baker, I.; Murphy, M. J.; Fister, T. T.; Wang, L. X.; Zhou, F.; Liu, L.; Kim, K. et al. Improving the thermal stability of NMC622 Li-ion battery cathodes through doping during coprecipitation. ACS Appl. Mater. Interfaces 2020, 12, 18512–18518.

[65]

Yabuuchi, N.; Kim, Y. T.; Li, H. H.; Shao-Horn, Y. Thermal instability of cycled LixNi0.5Mn0.5O2 electrodes: An in-situ synchrotron X-ray powder diffraction Study. Chem. Mater. 2008, 20, 4936–4951.

[66]

Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8, and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121–130.

[67]

Liu, X.; Xu, G. L.; Yin, L.; Hwang, I.; Li, Y.; Lu, L. G.; Xu, W. Q.; Zhang, X. Q.; Chen, Y. B.; Ren, Y. et al. Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange. J. Am. Chem. Soc. 2020, 142, 19745–19753.

[68]

Schweidler, S.; de Biasi, L.; Garcia, G.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: A long-term cycling study of full cells. ACS Appl. Energy Mater. 2019, 2, 7375–7384.

[69]

Zheng, J. X.; Ye, Y. K.; Liu, T. C.; Xiao, Y. G.; Wang, C. M.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.

[70]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[71]

Qiu, Q. Q.; Yuan, S. S.; Bao, J.; Wang, Q. C.; Yue, X. Y.; Li, X. L.; Wu, X. J.; Zhou, Y. N. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution. J. Energy Chem. 2021, 61, 574–581.

[72]

Zheng, J. C.; Yang, Z.; He, Z. J.; Tong, H.; Yu, W. J.; Zhang, J. F. In-situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 2018, 53, 613–621.

[73]

Liu, T. C.; Yu, L.; Lu, J.; Zhou, T.; Huang, X. J.; Cai, Z. H.; Dai, A.; Gim, J.; Ren, Y.; Xiao, X. H. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 2021, 12, 6024.

[74]

Xu, Z. R.; Jiang, Z. S.; Kuai, C. G.; Xu, R.; Qin, C. D.; Zhang, Y.; Rahman, M. M.; Wei, C. X.; Nordlund, D.; Sun, C. J. et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat. Commun. 2020, 11, 83.

[75]

Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Xiao, X. H. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 2020, 11, 3050.

[76]

Li, T. Y.; Yuan, X. Z.; Zhang, L.; Song, D. T.; Shi, K. Y.; Bock, C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 43–80.

[77]

Yu, H. X.; Qian, S. S.; Yan, L.; Li, P.; Lin, X. T.; Luo, M. H.; Long, N. B.; Shui, M.; Shu, J. Morphological, electrochemical, and in-situ XRD study of LiNi0.6Co0.2Mn0.1Al0.1O2 as high potential cathode material for rechargeable lithium-ion batteries. J. Alloys Compd. 2016, 667, 58–64.

[78]

Yang, X. Q.; McBreen, J.; Yoon, W. S.; Grey, C. P. Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in-situ XRD. Electrochem. Commun. 2002, 4, 649–654.

[79]

Wang, L.; Qiu, J. Y.; Wang, X. D.; Chen, L.; Cao, G. P.; Wang, J. L.; Zhang, H.; He, X. M. Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2022, 2, 125–137.

[80]

Li, H.; Zhou, P. F.; Liu, F. M.; Li, H. X.; Cheng, F. Y.; Chen, J. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chem. Sci. 2019, 10, 1374–1379.

[81]

Song, S. H.; Cho, M.; Park, I.; Yoo, J. G.; Ko, K. T.; Hong, J.; Kim, J.; Jung, S. K.; Avdeev, M.; Ji, S. et al. High-voltage-driven surface structuring and electrochemical stabilization of Ni-rich layered cathode materials for Li rechargeable batteries. Adv. Energy Mater. 2020, 10, 2000521.

[82]

Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1−xyCoxMnyO2 and LiNi1−xyCoxAlyO2. Chem. Mater. 2020, 32, 915–952.

[83]

Lai, J.; Zhang, J.; Li, Z. W.; Xiao, Y.; Hua, W. B.; Wu, Z. G.; Chen, Y. X.; Zhong, Y. J.; Xiang, W.; Guo, X. D. Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chem. Commun. 2020, 56, 4886–4889.

[84]

Liu, Y. C.; Zhu, H.; Zhu, H. K.; Ren, Y.; Zhu, Y. Z.; Huang, Y. L.; Dai, L.; Dou, S. M.; Xu, J.; Sun, C. J. et al. Modulating the surface ligand orientation for stabilized anionic redox in Li-rich oxide cathodes. Adv. Energy Mater. 2021, 11, 2003479.

[85]

Matras, D.; Ashton, T. E.; Dong, H.; Mirolo, M.; Martens, I.; Drnec, J.; Darr, J. A.; Quinn, P. D.; Jacques, S. D. M.; Beale, A. M. et al. Emerging chemical heterogeneities in a commercial 18650 NCA Li-ion battery during early cycling revealed by synchrotron X-ray diffraction tomography. J. Power Sources 2022, 539, 231589.

[86]

Sasaki, T.; Villevieille, C.; Takeuchi, Y.; Novák, P. Understanding inhomogeneous reactions in Li-ion batteries: Operando synchrotron X-ray diffraction on two-layer electrodes. Adv. Sci. 2015, 2, 1500083.

[87]

Song, B. H.; Day, S. J.; Sui, T.; Lu, L.; Tang, C. C.; Korsunsky, A. M. Mitigated phase transition during first cycle of a Li-rich layered cathode studied by in operando synchrotron X-ray powder diffraction. Phys. Chem. Chem. Phys. 2016, 18, 4745–4752.

[88]

Märker, K.; Reeves, P. J.; Xu, C.; Griffith, K. J.; Grey, C. P. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling. Chem. Mater. 2019, 31, 2545–2554.

[89]

Wang, L. G.; Liu, T. C.; Dai, A.; De Andrade, V.; Ren, Y.; Xu, W. Q.; Lee, S.; Zhang, Q. H.; Gu, L.; Wang, S. et al. Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 2021, 12, 5370.

[90]

Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Layla Mehdi, B. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84–92.

[91]

Yang, X. X.; Wang, S. N.; Han, D. Z.; Wang, K.; Tayal, A.; Baran, V.; Missyul, A.; Fu, Q.; Song, J. X.; Ehrenberg, H. et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathodes. Small 2022, 18, 2201522.

[92]

Qian, G. N.; Zhang, Y. T.; Li, L. S.; Zhang, R. X.; Xu, J. M.; Cheng, Z. J.; Xie, S. J.; Wang, H.; Rao, Q. L.; He, Y. S. et al. Single-crystal nickel-rich layered-oxide battery cathode materials: Synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater. 2020, 27, 140–149.

[93]

Langdon, J.; Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 37, 143–160.

[94]

Wang, T.; Ren, K. L.; Xiao, W.; Dong, W. H.; Qiao, H. L.; Duan, A. R.; Pan, H. Y.; Yang, Y.; Wang, H. L. Tuning the Li/Ni disorder of the NMC811 cathode by thermally driven competition between lattice ordering and structure decomposition. J. Phys. Chem. C 2020, 124, 5600–5607.

[95]

Wang, D. W.; Xin, C.; Zhang, M. J.; Bai, J. M.; Zheng, J. X.; Kou, R. H.; Peter Ko, J. Y.; Huq, A.; Zhong, G. M.; Sun, C. J. et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem. Mater. 2019, 31, 2731–2740.

[96]

Yin, L.; Li, Z.; Mattei, G. S.; Zheng, J. M.; Zhao, W. G.; Omenya, F.; Fang, C. C.; Li, W. D.; Li, J. Y.; Xie, Q. et al. Thermodynamics of antisite defects in layered NMC cathodes: Systematic insights from high-precision powder diffraction analyses. Chem. Mater. 2020, 32, 1002–1010.

[97]

Yang, Z. Z.; Charalambous, H.; Lin, Y. L.; Trask, S. E.; Yu, L.; Wen, J. G.; Jansen, A.; Tsai, Y.; Wiaderek, K. M.; Ren, Y. et al. Extreme fast charge aging: Correlation between electrode scale and heterogeneous degradation in Ni-rich layered cathodes. J. Power Sources 2022, 521, 230961.

[98]

Wu, X. Y.; Song, B. H.; Chien, P. H.; Everett, S. M.; Zhao, K. J.; Liu, J.; Du, Z. J. Structural evolution and transition dynamics in lithium ion battery under fast charging: An operando neutron diffraction investigation. Adv. Sci. 2021, 8, 2102318.

[99]

Zhou, Y. N.; Yue, J. L.; Hu, E. Y.; Li, H.; Gu, L.; Nam, K. W.; Bak, S. M.; Yu, X. Q.; Liu, J.; Bai, J. M. et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600597.

[100]

Quilty, C. D.; West, P. J.; Wheeler, G. P.; Housel, L. M.; Kern, C. J.; Tallman, K. R.; Ma, L.; Ehrlich, S.; Jaye, C.; Fischer, D. A. et al. Elucidating cathode degradation mechanisms in LiNi0.8Mn0.1Co0.1O2 (NMC811)/graphite cells under fast charge rates using operando synchrotron characterization. J. Electrochem. Soc. 2022, 169, 020545.

[101]

Ishikawa, T. Accelerator-based X-ray sources: Synchrotron radiation, X-ray free electron lasers, and beyond. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 2019, 377, 20180231.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2023
Revised: 27 February 2023
Accepted: 28 February 2023
Published: 29 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22121005, 22020102002, and 21835004) and the Frontiers Science Center for New Organic Matter of Nankai University (No. 63181206).

Return