Journal Home > Volume 16 , Issue 7

Traditional bulk MoS2 as an effective H2-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of high-porpotion saturated S, resulting in a slow interfacial H2-evolution reaction. In this paper, an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS. Simultaneously, amorphization of MoS2 can further increase the unsaturated active S sites. Herein, oxygen-contained amorphous MoSx (a-MoOSx) nanoparticles (10–30 nm) were tightly loaded on the CdS surface through a mild photoinduced deposition method by using (NH4)2[MoO(S4)2] solution as the precursor at room temperature. The photocatalytic H2-evolution result showed that the a-MoOSx/CdS performed the superior H2-production activity (382 μmol·h−1, apparent quantum efficiencies (AQE) = 11.83%) with a lot of visual H2 bubbles, which was 54.6, 2.5, and 5.1 times as high as that of CdS, MoSx/CdS, and annealed a-MoOSx/CdS, respectively. Characterizations and density functional theory (DFT) calculations revealed the mechanism of improved H2-evolution activity is that the O heteroatom in amorphous MoOSx can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S(2−δ)− sites. This study provides a new idea to improve the efficiency and number of H2-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation

Show Author's information Pinsi Deng1Ping Wang1( )Xuefei Wang1Feng Chen1Huogen Yu1,2( )
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

Abstract

Traditional bulk MoS2 as an effective H2-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of high-porpotion saturated S, resulting in a slow interfacial H2-evolution reaction. In this paper, an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS. Simultaneously, amorphization of MoS2 can further increase the unsaturated active S sites. Herein, oxygen-contained amorphous MoSx (a-MoOSx) nanoparticles (10–30 nm) were tightly loaded on the CdS surface through a mild photoinduced deposition method by using (NH4)2[MoO(S4)2] solution as the precursor at room temperature. The photocatalytic H2-evolution result showed that the a-MoOSx/CdS performed the superior H2-production activity (382 μmol·h−1, apparent quantum efficiencies (AQE) = 11.83%) with a lot of visual H2 bubbles, which was 54.6, 2.5, and 5.1 times as high as that of CdS, MoSx/CdS, and annealed a-MoOSx/CdS, respectively. Characterizations and density functional theory (DFT) calculations revealed the mechanism of improved H2-evolution activity is that the O heteroatom in amorphous MoOSx can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S(2−δ)− sites. This study provides a new idea to improve the efficiency and number of H2-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution.

Keywords: cocatalyst, photocatalytic hydrogen evolution, CdS, atomic hydrogen adsorption, oxygen-contained amorphous MoSx (a-MoOSx)

References(61)

[1]

Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118381.

[2]

Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin. J. Catal. 2020, 41, 122–130.

[3]

Wang, P.; Li, H. T.; Cao, Y. J.; Yu, H. G. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Phys. Chim. Sin. 2021, 37, 2008047.

[4]

Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437–1443.

[5]

Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B Environ. 2020, 275, 119144.

[6]

Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.

[7]

Wang, M.; Cheng, J. J.; Wang, X. F.; Hong, X. K.; Fan, J. J.; Yu, H. G. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37–45.

[8]

Gao, D. D.; Wu, X. H.; Wang, P.; Yu, H. G.; Zhu, B. C.; Fan, J. J.; Yu, J. G. Selenium-enriched amorphous NiSe1+x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution. Chem. Eng. J. 2021, 408, 127230.

[9]

Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009030.

[10]

Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1−xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22.

[11]

Eder, M.; Courtois, C.; Petzoldt, P.; Mackewicz, S.; Tschurl, M.; Heiz, U. Size and coverage effects of Ni and Pt co-catalysts in the photocatalytic hydrogen evolution from methanol on TiO2 (110). ACS Catal. 2022, 12, 9579–9588.

[12]

Li, K. N.; Zhang, S. S.; Li, Y. H.; Fan, J. J.; Lv, K. L. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin. J. Catal. 2021, 42, 3–14.

[13]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[14]

Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.

[15]

Yu, X. P.; Yang, C.; Song, P.; Peng, J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten 2020, 2, 194–202.

[16]

Xu, J. C.; Gao, D. D.; Yu, H. G.; Wang, P.; Zhu, B. C.; Wang, L. X.; Fan, J. J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. Chin. J. Catal. 2022, 43, 215–225.

[17]

Shao, M. M.; Shao, Y. F.; Ding, S. J.; Tong, R.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Shi, X. Q.; Sun, Y. Y. et al. Carbonized MoS2: Super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustainable Chem. Eng. 2019, 7, 4220–4229.

[18]

Gao, D. D.; Xu, J. C.; Wang, L. X.; Zhu, B. C.; Yu, H. G.; Yu, J. G. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 2022, 34, 2108475.

[19]

Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

[20]

Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.

[21]

Zhang, R. H.; Zhang, M. R.; Yang, H.; Li, G.; Xing, S. M.; Li, M. Y.; Xu, Y. L.; Zhang, Q. Y.; Hu, S.; Liao, H. G. et al. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5, 2100612.

[22]

Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.

[23]

Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.

[24]

Li, B. L.; Gong, C. B.; Shen, W.; Peng, J. D.; Zou, H. L.; Luo, H. Q.; Li, N. B. Engineering metallic MoS2 monolayers with responsive hydrogen evolution electrocatalytic activities for enzymatic reaction monitoring. J. Mater. Chem. A 2021, 9, 11056–11063.

[25]

Liu, J. P.; Liu, H. B.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 431, 133286.

[26]

Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chem. Eng. J. 2022, 438, 133286.

[27]

Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Lee Phillips, D.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk–shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.

[28]

Yin, L. S.; Hai, X.; Chang, K.; Ichihara, F.; Ye, J. H. Synergetic exfoliation and lateral size engineering of MoS2 for enhanced photocatalytic hydrogen generation. Small 2018, 14, 1704153.

[29]

Lin, Z. P.; Wang, Z. P.; Shen, S. J.; Chen, Y. C.; Du, Z. X.; Tao, W. Y.; Xu, A. J.; Ye, X. F.; Zhong, W. W.; Feng, S. S. One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance. J. Alloys Compd. 2020, 834, 155217.

[30]

Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Mater. Today Phys. 2022, 27, 100767.

[31]

Dinda, D.; Ahmed, E.; Mandal, S.; Mondal, B.; Saha, S. K. Amorphous molybdenum sulfide quantum dots: An efficient hydrogen evolution electrocatalyst in neutral medium. J. Mater. Chem. A 2016, 4, 15486–15493.

[32]

Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

[33]

Zhong, W.; Wu, X. H.; Liu, Y. P.; Wang, X. F.; Fan, J. J.; Yu, H. G. Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+x cocatalyst for efficient photocatalytic H2 evolution. Appl. Catal. B Environ. 2021, 280, 119455.

[34]

Dong, L.; Wang, P.; Yu, H. G. EDTA-assisted synthesis of amorphous BiSx nanodots for improving photocatalytic hydrogen-evolution rate of TiO2. J. Alloys Compd. 2021, 887, 161425.

[35]

Gao, D. D.; Zhao, B. B.; Chen, F.; Yu, H. G.; Fan, J. J.; Yu, J. G. Selenium-rich configuration and amorphization for synergistically maximizing the active-center amount of CoSe1+x nanodots toward efficient photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 2021, 9, 8653–8662.

[36]

Gao, D. D.; Zhong, W.; Wang, X. F.; Chen, F.; Yu, H. G. Increasing unsaturated Se number and facilitating atomic hydrogen adsorption of WSe2+x nanodots for improving photocatalytic H2 production of TiO2. J. Mater. Chem. A 2022, 10, 7989–7998.

[37]

Garrett, B. R.; Click, K. A.; Durr, C. B.; Hadad, C. M.; Wu, Y. Y. [MoO(S2)2L]1− (L = picolinate or pyrimidine-2-carboxylate) complexes as MoSx-inspired electrocatalysts for hydrogen production in aqueous solution. J. Am. Chem. Soc. 2016, 138, 13726–13731.

[38]

McDonald, J. W.; Friesen, G. D.; Rosenhein, L. D.; Newton, W. E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates. Inorg. Chim. Acta 1983, 72, 205–210.

[39]

Hadjikyriacou, A. I.; Coucouvanis, D. Synthesis, structural characterization, and properties of the [Mo2O2S9]2− thio anion and the [Mo4O4S18]2−, [Mo2O2S8(SCH3)], and [Mo2O2S8Cl] derivatives. Inorg. Chem. 1989, 28, 2169–2177.

[40]

Lee, C. H.; Lee, S.; Kang, G. S.; Lee, Y. K.; Park, G. G.; Lee, D. C.; Joh, H. I. Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 258, 117995.

[41]

Duong, T. M.; Nguyen, P. D.; Nguyen, A. D.; Le, L. T.; Nguyen, L. T.; Pham, H. V.; Tran, P. D. Insights into the electrochemical polymerization of [Mo3S13]2− generating amorphous molybdenum sulfide. Chem.—Eur. J. 2019, 25, 13676–13682.

[42]

Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.

[43]

Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

[44]

Mitchell, P. C. H. Oxo-species of molybdenum-(V) and -(VI). Quart. Rev. Chem. Soc. 1966, 20, 103–118.

[45]

Kokliukhin, A.; Nikulshina, M.; Mozhaev, A.; Lancelot, C.; Blanchard, P.; Mentré, O.; Marinova, M.; Lamonier, C.; Nikulshin, P. The effect of the Mo/W ratio on the catalytic properties of alumina supported hydrotreating catalysts prepared from mixed SiMo6W6 and SiMo9W3 heteropolyacids. Catal. Today 2021, 377, 100–113.

[46]

Gao, D. D.; Xu, J. C.; Chen, F.; Wang, P.; Yu, H. G. Unsaturated selenium-enriched MoSe2+x amorphous nanoclusters: One-step photoinduced co-reduction route and its boosted photocatalytic H2-evolution activity for TiO2. Appl. Catal. B Environ. 2022, 305, 121053.

[47]

Jin, B. W.; Zhou, X. M.; Huang, L.; Licklederer, M.; Yang, M.; Schmuki, P. Aligned MoOx/MoS2 core–shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew. Chem., Int. Ed. 2016, 55, 12252–12256.

[48]

Xu, J. C.; Zhong, W.; Gao, D. D.; Wang, X. F.; Wang, P.; Yu, H. G. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.

[49]

Li, F.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: A new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782.

[50]

Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.

[51]

Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2-evolution of TiO2. Appl. Catal. B Environ. 2021, 290, 120057.

[52]

Zhai, Y. Y.; Ren, X. R.; Yan, J. Q.; Liu, S. Z. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096.

[53]

Gao, D. D.; Long, H. Y.; Wang, X. F.; Yu, J. G.; Yu, H. G. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv. Funct. Mater. 2023, 33, 2209994.

[54]

Guo, L.; Li, R.; Jiang, J. W.; Fan, X. P.; Zou, J. J.; Mi, W. B. Role of spin-resolved anti-bonding states filling for enhanced HER performance in 3d transition metals doped monolayer WSe2. Appl. Surf. Sci. 2022, 599, 153979.

[55]

Kim, M.; Park, G. H.; Seo, S.; Bui, V. Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Uncovering the role of countercations in ligand exchange of WSe2: Tuning the d-band center toward improved hydrogen desorption. ACS Appl. Mater. Interfaces 2021, 13, 11403–11413.

[56]

Wang, T. T.; Wang, P. Y.; Pang, Y. J.; Wu, Y. T.; Yang, J.; Chen, H.; Gao, X. R.; Mu, S. C.; Kou, Z. K. Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. Nano Res. 2022, 15, 3946–3951.

[57]

Zhong, W.; Xu, J. C.; Wang, P.; Zhu, B. C.; Fan, J. J.; Yu, H. G. Novel core–shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. Chin. J. Catal. 2022, 43, 1074–1083.

[58]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[59]

Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.

[60]

Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

[61]

Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small 2019, 15, 1902459.

Video
12274_2023_5629_MOESM2_ESM.mp4
File
12274_2023_5629_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2022
Revised: 27 February 2023
Accepted: 28 February 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178275) and the Natural Science Foundation of Hubei Province of China (No. 2022CFA001).

Return