Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Traditional bulk MoS2 as an effective H2-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of high-porpotion saturated S, resulting in a slow interfacial H2-evolution reaction. In this paper, an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS. Simultaneously, amorphization of MoS2 can further increase the unsaturated active S sites. Herein, oxygen-contained amorphous MoSx (a-MoOSx) nanoparticles (10–30 nm) were tightly loaded on the CdS surface through a mild photoinduced deposition method by using (NH4)2[MoO(S4)2] solution as the precursor at room temperature. The photocatalytic H2-evolution result showed that the a-MoOSx/CdS performed the superior H2-production activity (382 μmol·h−1, apparent quantum efficiencies (AQE) = 11.83%) with a lot of visual H2 bubbles, which was 54.6, 2.5, and 5.1 times as high as that of CdS, MoSx/CdS, and annealed a-MoOSx/CdS, respectively. Characterizations and density functional theory (DFT) calculations revealed the mechanism of improved H2-evolution activity is that the O heteroatom in amorphous MoOSx can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S(2−δ)− sites. This study provides a new idea to improve the efficiency and number of H2-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution.
Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118381.
Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin. J. Catal. 2020, 41, 122–130.
Wang, P.; Li, H. T.; Cao, Y. J.; Yu, H. G. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Phys. Chim. Sin. 2021, 37, 2008047.
Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437–1443.
Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B Environ. 2020, 275, 119144.
Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.
Wang, M.; Cheng, J. J.; Wang, X. F.; Hong, X. K.; Fan, J. J.; Yu, H. G. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37–45.
Gao, D. D.; Wu, X. H.; Wang, P.; Yu, H. G.; Zhu, B. C.; Fan, J. J.; Yu, J. G. Selenium-enriched amorphous NiSe1+x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution. Chem. Eng. J. 2021, 408, 127230.
Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009030.
Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1−xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22.
Eder, M.; Courtois, C.; Petzoldt, P.; Mackewicz, S.; Tschurl, M.; Heiz, U. Size and coverage effects of Ni and Pt co-catalysts in the photocatalytic hydrogen evolution from methanol on TiO2 (110). ACS Catal. 2022, 12, 9579–9588.
Li, K. N.; Zhang, S. S.; Li, Y. H.; Fan, J. J.; Lv, K. L. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin. J. Catal. 2021, 42, 3–14.
Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.
Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.
Yu, X. P.; Yang, C.; Song, P.; Peng, J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten 2020, 2, 194–202.
Xu, J. C.; Gao, D. D.; Yu, H. G.; Wang, P.; Zhu, B. C.; Wang, L. X.; Fan, J. J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. Chin. J. Catal. 2022, 43, 215–225.
Shao, M. M.; Shao, Y. F.; Ding, S. J.; Tong, R.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Shi, X. Q.; Sun, Y. Y. et al. Carbonized MoS2: Super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustainable Chem. Eng. 2019, 7, 4220–4229.
Gao, D. D.; Xu, J. C.; Wang, L. X.; Zhu, B. C.; Yu, H. G.; Yu, J. G. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 2022, 34, 2108475.
Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.
Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.
Zhang, R. H.; Zhang, M. R.; Yang, H.; Li, G.; Xing, S. M.; Li, M. Y.; Xu, Y. L.; Zhang, Q. Y.; Hu, S.; Liao, H. G. et al. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5, 2100612.
Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.
Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.
Li, B. L.; Gong, C. B.; Shen, W.; Peng, J. D.; Zou, H. L.; Luo, H. Q.; Li, N. B. Engineering metallic MoS2 monolayers with responsive hydrogen evolution electrocatalytic activities for enzymatic reaction monitoring. J. Mater. Chem. A 2021, 9, 11056–11063.
Liu, J. P.; Liu, H. B.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 431, 133286.
Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chem. Eng. J. 2022, 438, 133286.
Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Lee Phillips, D.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk–shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.
Yin, L. S.; Hai, X.; Chang, K.; Ichihara, F.; Ye, J. H. Synergetic exfoliation and lateral size engineering of MoS2 for enhanced photocatalytic hydrogen generation. Small 2018, 14, 1704153.
Lin, Z. P.; Wang, Z. P.; Shen, S. J.; Chen, Y. C.; Du, Z. X.; Tao, W. Y.; Xu, A. J.; Ye, X. F.; Zhong, W. W.; Feng, S. S. One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance. J. Alloys Compd. 2020, 834, 155217.
Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Mater. Today Phys. 2022, 27, 100767.
Dinda, D.; Ahmed, E.; Mandal, S.; Mondal, B.; Saha, S. K. Amorphous molybdenum sulfide quantum dots: An efficient hydrogen evolution electrocatalyst in neutral medium. J. Mater. Chem. A 2016, 4, 15486–15493.
Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.
Zhong, W.; Wu, X. H.; Liu, Y. P.; Wang, X. F.; Fan, J. J.; Yu, H. G. Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+x cocatalyst for efficient photocatalytic H2 evolution. Appl. Catal. B Environ. 2021, 280, 119455.
Dong, L.; Wang, P.; Yu, H. G. EDTA-assisted synthesis of amorphous BiSx nanodots for improving photocatalytic hydrogen-evolution rate of TiO2. J. Alloys Compd. 2021, 887, 161425.
Gao, D. D.; Zhao, B. B.; Chen, F.; Yu, H. G.; Fan, J. J.; Yu, J. G. Selenium-rich configuration and amorphization for synergistically maximizing the active-center amount of CoSe1+x nanodots toward efficient photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 2021, 9, 8653–8662.
Gao, D. D.; Zhong, W.; Wang, X. F.; Chen, F.; Yu, H. G. Increasing unsaturated Se number and facilitating atomic hydrogen adsorption of WSe2+x nanodots for improving photocatalytic H2 production of TiO2. J. Mater. Chem. A 2022, 10, 7989–7998.
Garrett, B. R.; Click, K. A.; Durr, C. B.; Hadad, C. M.; Wu, Y. Y. [MoO(S2)2L]1− (L = picolinate or pyrimidine-2-carboxylate) complexes as MoSx-inspired electrocatalysts for hydrogen production in aqueous solution. J. Am. Chem. Soc. 2016, 138, 13726–13731.
McDonald, J. W.; Friesen, G. D.; Rosenhein, L. D.; Newton, W. E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates. Inorg. Chim. Acta 1983, 72, 205–210.
Hadjikyriacou, A. I.; Coucouvanis, D. Synthesis, structural characterization, and properties of the [Mo2O2S9]2− thio anion and the [Mo4O4S18]2−, [Mo2O2S8(SCH3)]−, and [Mo2O2S8Cl]− derivatives. Inorg. Chem. 1989, 28, 2169–2177.
Lee, C. H.; Lee, S.; Kang, G. S.; Lee, Y. K.; Park, G. G.; Lee, D. C.; Joh, H. I. Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 258, 117995.
Duong, T. M.; Nguyen, P. D.; Nguyen, A. D.; Le, L. T.; Nguyen, L. T.; Pham, H. V.; Tran, P. D. Insights into the electrochemical polymerization of [Mo3S13]2− generating amorphous molybdenum sulfide. Chem.—Eur. J. 2019, 25, 13676–13682.
Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.
Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.
Mitchell, P. C. H. Oxo-species of molybdenum-(V) and -(VI). Quart. Rev. Chem. Soc. 1966, 20, 103–118.
Kokliukhin, A.; Nikulshina, M.; Mozhaev, A.; Lancelot, C.; Blanchard, P.; Mentré, O.; Marinova, M.; Lamonier, C.; Nikulshin, P. The effect of the Mo/W ratio on the catalytic properties of alumina supported hydrotreating catalysts prepared from mixed SiMo6W6 and SiMo9W3 heteropolyacids. Catal. Today 2021, 377, 100–113.
Gao, D. D.; Xu, J. C.; Chen, F.; Wang, P.; Yu, H. G. Unsaturated selenium-enriched MoSe2+x amorphous nanoclusters: One-step photoinduced co-reduction route and its boosted photocatalytic H2-evolution activity for TiO2. Appl. Catal. B Environ. 2022, 305, 121053.
Jin, B. W.; Zhou, X. M.; Huang, L.; Licklederer, M.; Yang, M.; Schmuki, P. Aligned MoOx/MoS2 core–shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew. Chem., Int. Ed. 2016, 55, 12252–12256.
Xu, J. C.; Zhong, W.; Gao, D. D.; Wang, X. F.; Wang, P.; Yu, H. G. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.
Li, F.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: A new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782.
Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.
Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2-evolution of TiO2. Appl. Catal. B Environ. 2021, 290, 120057.
Zhai, Y. Y.; Ren, X. R.; Yan, J. Q.; Liu, S. Z. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096.
Gao, D. D.; Long, H. Y.; Wang, X. F.; Yu, J. G.; Yu, H. G. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv. Funct. Mater. 2023, 33, 2209994.
Guo, L.; Li, R.; Jiang, J. W.; Fan, X. P.; Zou, J. J.; Mi, W. B. Role of spin-resolved anti-bonding states filling for enhanced HER performance in 3d transition metals doped monolayer WSe2. Appl. Surf. Sci. 2022, 599, 153979.
Kim, M.; Park, G. H.; Seo, S.; Bui, V. Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Uncovering the role of countercations in ligand exchange of WSe2: Tuning the d-band center toward improved hydrogen desorption. ACS Appl. Mater. Interfaces 2021, 13, 11403–11413.
Wang, T. T.; Wang, P. Y.; Pang, Y. J.; Wu, Y. T.; Yang, J.; Chen, H.; Gao, X. R.; Mu, S. C.; Kou, Z. K. Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. Nano Res. 2022, 15, 3946–3951.
Zhong, W.; Xu, J. C.; Wang, P.; Zhu, B. C.; Fan, J. J.; Yu, H. G. Novel core–shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. Chin. J. Catal. 2022, 43, 1074–1083.
Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.
Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.
Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.
Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small 2019, 15, 1902459.