Journal Home > Volume 16 , Issue 7

Traditional bulk MoS2 as an effective H2-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of high-porpotion saturated S, resulting in a slow interfacial H2-evolution reaction. In this paper, an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS. Simultaneously, amorphization of MoS2 can further increase the unsaturated active S sites. Herein, oxygen-contained amorphous MoSx (a-MoOSx) nanoparticles (10–30 nm) were tightly loaded on the CdS surface through a mild photoinduced deposition method by using (NH4)2[MoO(S4)2] solution as the precursor at room temperature. The photocatalytic H2-evolution result showed that the a-MoOSx/CdS performed the superior H2-production activity (382 μmol·h−1, apparent quantum efficiencies (AQE) = 11.83%) with a lot of visual H2 bubbles, which was 54.6, 2.5, and 5.1 times as high as that of CdS, MoSx/CdS, and annealed a-MoOSx/CdS, respectively. Characterizations and density functional theory (DFT) calculations revealed the mechanism of improved H2-evolution activity is that the O heteroatom in amorphous MoOSx can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S(2−δ)− sites. This study provides a new idea to improve the efficiency and number of H2-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution.

Video
12274_2023_5629_MOESM2_ESM.mp4
File
12274_2023_5629_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2022
Revised: 27 February 2023
Accepted: 28 February 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178275) and the Natural Science Foundation of Hubei Province of China (No. 2022CFA001).

Return