Journal Home > Volume 16 , Issue 7

During the catalytic process, the microenvironment and surface area of the catalyst will affect the catalytic performance. Hence, an assisted organic linker coated metal-organic framework (MOF) has been applied, to form Ni/HNC (HNC represents hollow nanocage) for electrocatalytic CO2 reduction. Remarkably, Ni/HNC achieves superb activity with high Faradaic efficiency (FE) of 97.2% at 0.7 V vs. reversible hydrogen electrode (RHE) towards CO2 conversion to CO. In contrast to Ni/NPC (afforded from the naked MOF), the Ni/HNC displays higher FE and selectivity on CO rather than H2, owing to the large nanocage which extraordinarily facilitates CO2 enrichment and the active sites easily accessible. This work provides a general and feasible route to construct high-efficient electrochemical CO2 reduction reaction (EC-CO2RR) catalysts via post-modified MOFs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion

Show Author's information Ruirui Yun( )Ruiming XuChangsong ShiBeibei ZhangTuanhui LiLei HeTian Sheng( )Zheng Chen( )
The key laboratory of functional molecular solids Ministry of Education, College of chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China

Abstract

During the catalytic process, the microenvironment and surface area of the catalyst will affect the catalytic performance. Hence, an assisted organic linker coated metal-organic framework (MOF) has been applied, to form Ni/HNC (HNC represents hollow nanocage) for electrocatalytic CO2 reduction. Remarkably, Ni/HNC achieves superb activity with high Faradaic efficiency (FE) of 97.2% at 0.7 V vs. reversible hydrogen electrode (RHE) towards CO2 conversion to CO. In contrast to Ni/NPC (afforded from the naked MOF), the Ni/HNC displays higher FE and selectivity on CO rather than H2, owing to the large nanocage which extraordinarily facilitates CO2 enrichment and the active sites easily accessible. This work provides a general and feasible route to construct high-efficient electrochemical CO2 reduction reaction (EC-CO2RR) catalysts via post-modified MOFs.

Keywords: post-modification, electrocatalytic CO2 reduction, atomically dispersed sites, hollow nanocage

References(39)

[1]

Anagnostou, E.; John, E. H.; Edgar, K. M.; Foster, G. L.; Ridgwell, A.; Inglis, G. N.; Pancost, R. D.; Lunt, D. J.; Pearson, P. N. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 2016, 533, 380–384.

[2]

Mun, Y.; Kim, K.; Kim, S.; Lee, S.; Lee, S.; Kim, S.; Choi, W.; Kim, S. K.; Han, J. W.; Lee, J. A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Appl. Catal. B: Environ. 2018, 236, 154–161.

[3]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[4]

Xu, X. F.; Lin, K.; Zhou, D.; Liu, Q.; Qin, X. Y.; Wang, S. W.; He, S.; Kang, F. Y.; Li, B. H.; Wang, G. X. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6, 902–918.

[5]

Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.

[6]

Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

[7]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[8]

Woldu, A. R.; Huang, Z. L.; Zhao, P. X.; Hu, L. S.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.

[9]

Shen, S. B.; He, J.; Peng, X. Y.; Xi, W.; Zhang, L. H.; Xi, D. S.; Wang, L.; Liu, X. J.; Luo, J. Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. J. Mater. Chem. A 2018, 6, 18960–18966.

[10]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of erovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[11]

Dong, L. Z.; Lu, Y. F.; Wang, R.; Zhou, J.; Zhang, Y.; Zhang, L.; Liu, J.; Li, S. L.; Lan, Y. Q. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 2022, 15, 10185–10193.

[12]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[13]

Vo, C. H.; Mondelli, C.; Hamedi, H.; Pérez-Ramírez, J.; Farooq, S.; Karimi, I. A. Sustainability assessment of thermocatalytic conversion of CO2 to transportation fuels, methanol, and 1-propanol. ACS Sustainable Chem. Eng. 2021, 9, 10591–10600.

[14]

Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.

[15]

De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.

[16]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[17]

Duan, Z. Y.; Zhao, X. J.; Wei, C. W.; Chen, L. M. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion. Appl. Catal. A Gen. 2020, 594, 117459.

[18]

Jiang, M. P.; Li, C.; Huang, K. K.; Wang, Y.; Liu, J. H.; Geng, Z. B.; Hou, X. Y.; Shi, J. Y.; Feng, S. H. Tuning W18O49/Cu2O {111} interfaces for the highly selective CO2 photocatalytic conversion to CH4. ACS Appl. Mater. Interfaces 2020, 12, 35113–35119.

[19]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[20]

Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C. M.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

[21]

Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

[22]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[23]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[24]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[25]

Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.

[26]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[27]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[28]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[29]

Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.

[30]

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

[31]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[32]

Yun, R. R.; Li, T. H.; Zhang, B. B.; He, L.; Liu, S. J.; Yu, C.; Chen, Z.; Luo, S. Z. Amino induced high-loading atomically dispersed Co sites on N-doped hollow carbon for efficient CO2 transformation. Chem. Commun. 2022, 58, 6602–6605.

[33]

Yun, R. R.; Zhan, F. Y.; Wang, X. J.; Zhang, B. B.; Sheng, T.; Xin, Z. F.; Mao, J. J.; Liu, S. J.; Zheng, B. S. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small 2021, 17, 2006951.

[34]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM-ESPRESSO: A modular and open-source software project for quantum simulation of materials. J. Phys. Condens. Matter. 2009, 21, 395502.

[35]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[36]

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41, 7892–7895.

[37]

Yun, R. R.; Zhan, F. Y.; Li, N.; Zhang, B. B.; Ma, W. J.; Hong, L. R.; Sheng, T.; Du, L. T.; Zheng, B. S.; Liu, S. J. Fe single atoms and Fe2O3 clusters liberated from N-doped polyhedral carbon for chemoselective hydrogenation under mild conditions. ACS Appl. Mater. Interfaces 2020, 12, 34122–34129.

[38]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[39]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

File
12274_2023_5626_MOESM1_ESM.pdf (940.6 KB)
12274_2023_5626_MOESM2_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2023
Revised: 23 February 2023
Accepted: 27 February 2023
Published: 14 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (No. 21401004), the Natural Science Foundation of Anhui Province (Nos. 1508085QB36 and 2008085MB52), the Key Research and Development Projects of Anhui Province (No. 2022a05020048), the Open Foundation of Anhui Laboratory of Molecule-based Materials (No. fzj19005), and the National Creative Plan of Students (No. 202110370044).

Return