Journal Home > Volume 16 , Issue 7

Developing innovative, easy-to-manufacture, and non-Pt-group-metal (non-PGM) electrocatalysts is essential for the highly efficient oxygen reduction reaction (ORR). Herein, we report a self-sacrificing post-synthetic strategy to synthesize highly loaded Fe-isolated single atoms anchored on the hierarchical porous N,S co-doped carbon matrix (Fe-SAs/S,N-C/rGO). The optimized Fe-SAs/S,N-C/rGO exhibits excellent ORR activity in the pH-universal range with half-wave potentials of 0.89, 0.80, and 0.60 V in alkaline, acidic, and neutral media, comparable to the commercial Pt/C (0.85, 0.81, and 0.64 V, respectively). The homemade liquid Zn-air battery (ZAB) with Fe-SAs/S,N-C/rGO as the cathode catalyst displays an open-circuit voltage (OCV) of ~ 1.61 V, discharging specific capacity of 817.23 mAh·g−1, and long-term durability of ~ 1865 cycles, outperforming those of the device with commercial Pt/C+RuO2 (1.49 V, 657.32 mAh·g−1, and ~ 120 cycles, respectively). Intriguingly, the corresponding flexible solid-state ZAB delivers satisfactory OCV, peak power density, foldability, and cycling stability at room temperature, as well as adaptability at a low temperature of −10 °C. Besides, density functional theory (DFT) calculation reveals that the atomic FeN3S moieties in Fe-SAs/S,N-C/rGO can cause charge redistribution and lower the binding strength of oxygen-containing intermediates, resulting in accelerated ORR kinetics and optimized catalytic activity. This work provides insights into experimental and theoretical guidance towards non-PGM electrocatalysts for efficient energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries

Show Author's information Le Li1,2Na Li1Jia-Wei Xia1Shi-Long Zhou1Xing-Yue Qian1Feng-Xiang Yin1Guo-Hong Dai1Guang-Yu He1( )Hai-Qun Chen1( )
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China

Abstract

Developing innovative, easy-to-manufacture, and non-Pt-group-metal (non-PGM) electrocatalysts is essential for the highly efficient oxygen reduction reaction (ORR). Herein, we report a self-sacrificing post-synthetic strategy to synthesize highly loaded Fe-isolated single atoms anchored on the hierarchical porous N,S co-doped carbon matrix (Fe-SAs/S,N-C/rGO). The optimized Fe-SAs/S,N-C/rGO exhibits excellent ORR activity in the pH-universal range with half-wave potentials of 0.89, 0.80, and 0.60 V in alkaline, acidic, and neutral media, comparable to the commercial Pt/C (0.85, 0.81, and 0.64 V, respectively). The homemade liquid Zn-air battery (ZAB) with Fe-SAs/S,N-C/rGO as the cathode catalyst displays an open-circuit voltage (OCV) of ~ 1.61 V, discharging specific capacity of 817.23 mAh·g−1, and long-term durability of ~ 1865 cycles, outperforming those of the device with commercial Pt/C+RuO2 (1.49 V, 657.32 mAh·g−1, and ~ 120 cycles, respectively). Intriguingly, the corresponding flexible solid-state ZAB delivers satisfactory OCV, peak power density, foldability, and cycling stability at room temperature, as well as adaptability at a low temperature of −10 °C. Besides, density functional theory (DFT) calculation reveals that the atomic FeN3S moieties in Fe-SAs/S,N-C/rGO can cause charge redistribution and lower the binding strength of oxygen-containing intermediates, resulting in accelerated ORR kinetics and optimized catalytic activity. This work provides insights into experimental and theoretical guidance towards non-PGM electrocatalysts for efficient energy conversion.

Keywords: Zn-air battery, heteroatom dopant, single-atom electrocatalyst, density functional theory (DFT) study, FeN3S sites

References(57)

[1]

Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[2]

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

[3]

Tan, F.; Li, W.; Wang, J. S.; Min, C. G.; Li, Z. P.; Zhang, B. S.; Zheng, X. S.; Li, L. N.; Zhang, L. Z.; Zhou, L. X. et al. Clarifying the critical roles of iron in boosting oxygen reduction: Single Fe atoms anchored on carbon vacancies as efficient active sites. Appl. Catal. B: Environ. 2022, 305, 121035.

[4]

Li, L.; Li, N.; Xia, J. W.; Zhou, S. L.; Qian, X. Y.; Yin, F. X.; He, G. Y.; Chen, H. Q. Metal-organic framework-derived Co single atoms anchored on N-doped hierarchically porous carbon as a pH-universal ORR electrocatalyst for Zn-air batteries. J. Mater. Chem. A 2023, 11, 2291–2301.

[5]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

[6]

Tan, H.; Zhou, Y.; Qiao, S. Z.; Fan, H. J. Metal organic framework (MOF) in aqueous energy devices. Mater. Today 2021, 48, 270–284.

[7]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[8]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[9]

Zheng, Y.; Song, H.; Chen, S.; Yu, X. H.; Zhu, J. X.; Xu, J. S.; Zhang, K. A. I.; Zhang, C.; Liu, T. X. Metal-free multi-heteroatom-doped carbon bifunctional electrocatalysts derived from a covalent triazine polymer. Small 2020, 16, 2004342.

[10]

Ji, S. Q.; Liu, T. Y.; Leng, L. P.; Liu, H. X.; Zhang, J. W.; Zhang, M. Y.; Xu, Q.; Zhu, J. F.; Qiao, M.; Wang, Y.; Horton, J.; Li, Z. J. Protein-mediated synthesis of iron single atom electrocatalyst with highly accessible active sites for enhanced pH-universal oxygen reduction. Appl. Catal. B: Environ. 2023, 320, 121987.

[11]

Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 7384–7389.

[12]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[13]

Wang, Q.; Yang, Y. Q.; Sun, F. F.; Chen, G. B.; Wang, J.; Peng, L. S.; Chen, W. T.; Shang, L.; Zhao, J. Q.; Sun-Waterhouse, D. et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy Mater. 2021, 11, 2100219.

[14]

Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.

[15]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[16]

Li, J. C.; Zhong, H.; Xu, M. J.; Li, T.; Wang, L. G.; Shi, Q. R.; Feng, S.; Lyu, Z. Y.; Liu, D.; Du, D. et al. Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

[17]

Wang, H. H.; Lv, L. B.; Zhang, S. N.; Su, H.; Zhai, G. Y.; Lei, W. W.; Li, X. H.; Chen, J. S. Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. Nano Res. 2020, 13, 2079–2084.

[18]

Guo, L.; Hwang, S.; Li, B. Y.; Yang, F.; Wang, M. Y.; Chen, M. J.; Yang, X. X.; Karakalos, S. G.; Cullen, D. A.; Feng, Z. X. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021, 15, 6886–6899.

[19]
Li, L.; Li, N.; Xia, J. W.; Xing, H. R.; Arif, M.; Zhao, Y. T.; He, G. Y.; Chen, H. Q. Post-synthetic electrostatic adsorption-assisted fabrication of efficient single-atom Fe-N-C oxygen reduction catalysts for Zn-air batteries. Sci. China Mater., in press, https://doi.org/10.1007/s40843-022-2207-x.
[20]

Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

[21]

Liu, D. W.; Srinivas, K.; Chen, A. R.; Ma, F.; Yu, H. S.; Zhang, Z. H.; Wang, M. Y.; Wu, Y.; Chen, Y. F. Atomic Fe/Zn anchored N,S co-doped nano-porous carbon for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2023, 635, 578–587.

[22]
Wu, L. M.; Zhao, R. G.; Du, G.; Wang, H.; Hou, M. C.; Zhang, W.; Sun, P. C.; Chen, T. H. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2022.03.014.
[23]

Liu, F.; Shi, L.; Song, S. F.; Ge, K.; Zhang, X. P.; Guo, Y. C.; Liu, D. Simultaneously engineering the coordination environment and pore architecture of metal-organic framework-derived single-atomic iron catalysts for ultraefficient oxygen reduction. Small 2021, 17, 2102425.

[24]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S,N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[25]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[26]

Li, L. B.; Huang, S. H.; Cao, R.; Yuan, K.; Lu, C. B.; Huang, B. Y.; Tang, X. N.; Hu, T.; Zhuang, X. D.; Chen, Y. W. Optimizing microenvironment of asymmetric N,S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 2022, 18, 2105387.

[27]

Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

[28]

Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

[29]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. C. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[30]

Li, P. B.; Qi, X. Q.; Zhao, L.; Wang, J. J.; Wang, M.; Shao, M. H.; Chen, J. S.; Wu, R.; Wei, Z. D. Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries. J. Mater. Chem. A 2022, 10, 5925–5929.

[31]

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B: Environ. 2021, 280, 119411.

[32]

Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

[33]

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

[34]

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

[35]

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. 2017, 129, 625–629.

[36]

Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

[37]

Lee, J. I.; Shin, J. S.; Lee, J. E.; Jung, W. Y.; Lee, G.; Kim, M. S.; Park, C. G.; Kim, S. J. Reference values of hematology, chemistry, electrolytes, blood gas, coagulation time, and urinalysis in the Chinese rhesus macaques (Macaca mulatta). Xenotransplantation 2012, 19, 244–248.

[38]

Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238–1254.

[39]

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

[40]

Higgins, D. C.; Hoque, M. A.; Hassan, F.; Choi, J. Y.; Kim, B.; Chen, Z. W. Oxygen reduction on graphene-carbon nanotube composites doped sequentially with nitrogen and sulfur. ACS Catal. 2014, 4, 2734–2740.

[41]

Zou, G. Q.; Hou, H. S.; Foster, C. W.; Banks, C. E.; Guo, T. X.; Jiang, Y. L.; Zhang, Y.; Ji, X. B. Advanced hierarchical vesicular carbon co-doped with S, P, N for high-rate sodium storage. Adv. Sci. 2018, 5, 1800241.

[42]

Pu, M. J.; Ma, Y. W.; Wan, J. Q.; Wang, Y.; Huang, M. Z.; Chen, Y. M. Fe/S doped granular activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of orange G and diethyl phthalate. J. Colloid Interface Sci. 2014, 418, 330–337.

[43]

Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

[44]

Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 1995, 52, 2995–3009.

[45]

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 2005, 12, 537–541.

[46]

Funke, H.; Chukalina, M.; Rossberg, A. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Scr. 2005, 232, 094110.

[47]

Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B: Environ. 2020, 267, 118720.

[48]

Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

[49]

Wang, Y. C.; Wan, L. Y.; Cui, P. X.; Tong, L.; Ke, Y. Q.; Sheng, T.; Zhang, M.; Sun, S. H.; Liang, H. W.; Wang, Y. S. et al. Porous carbon membrane-supported atomically dispersed pyrrole-type Fe-N4 as active sites for electrochemical hydrazine oxidation reaction. Small 2020, 16, 2002203.

[50]

Li, X. H.; Yang, X. X.; Liu, L. T.; Zhao, H.; Li, Y. W.; Zhu, H. Y.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Tan, Q. et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal. 2021, 11, 7450–7459.

[51]

Gan, J.; Hao, C. Y.; Guo, J. N.; Chen, W. Y.; Cao, Y. Q.; Luo, W.; Huang, Z. K.; Xiang, Z. H.; Duan, X. Z.; Zhou, X. G. How PM2.5 affects Pt-catalyzed oxygen reduction reaction. ACS Sustainable Chem. Eng. 2020, 8, 9385–9392.

[52]

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

[53]

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

[54]

Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D. J.; Balamurugan, J.; Yoo, H. S.; Kwon, D.; Kim, Y. H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115.

[55]

Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.

[56]

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

[57]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

File
12274_2023_5625_MOESM1_ESM.pdf (10.1 MB)
12274_2023_5625_MOESM2_ESM.pdf (11.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2023
Revised: 23 February 2023
Accepted: 27 February 2023
Published: 30 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078028 and 21978026), the National Science Foundation for Young Scientists of China (No. 22209016), and the International Scientific and Technological Cooperation Program of Changzhou (No. CZ20220028). The authors would like to thank the Analysis and Testing Center, NERC Biomass of Changzhou University, the Shiyanjia Lab (www.shiyanjia.com), and the SCI-GO (www.sci-go.com) for materials characterizations as well as the Changzhou University Computer Center for computing services.

Return