Journal Home > Volume 16 , Issue 5

The residual of oxidant chemicals in advanced oxidation processes (AOPs) resulted in both economic cost and secondary pollution. Herein, we report a direct oxidation of phenolic pollutants induced by Ca-Mn-O perovskites without using an oxidant. Governed by one-electron transfer process (ETP) from the phenolics to the Ca-Mn-O perovskites, this direct oxidation proceeds in fast reaction kinetics with activation energy of 51.4 kJ/mol, which was comparable with those AOPs-based catalytic systems. Additionally, mineralization and polymerization reactions occurred on the Ca-Mn-O surface and ensured the complete removal of phenolics. The high spin state Mn(III) within Ca-Mn-O structure was the dominant active site for this ETP. The elongated axial Mn(III)–O bonds within the [MnO6] octahedron facilitated the acceptance of the electrons from the phenolics and thus promoted the initiation of the direct oxidation process. Mn(III) in the high spin state can also activate dissolved O2 to produce singlet oxygen (1O2) for a fast removal of phenolics. The mixed Mn(III)/Mn(IV) within Ca-Mn-O accelerated the ETP by enhancing the electrical conductivity. This efficient Ca-Mn-O-induced ETP for removal of organic contaminants casts off the dependence on external chemical and energy inputs and provides a sustainable approach for transforming the toxic organic pollutants into value-added polymers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electron transfer to direct oxidation of aqueous organics by perovskites

Show Author's information Tao Kong1Yuxian Wang1( )Shenning Liu1Ya Liu1,2Menghan Zhou1Bofeng Li1Xiaoguang Duan2Chunmao Chen1( )Shaobin Wang2( )
State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing 102249, China
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

The residual of oxidant chemicals in advanced oxidation processes (AOPs) resulted in both economic cost and secondary pollution. Herein, we report a direct oxidation of phenolic pollutants induced by Ca-Mn-O perovskites without using an oxidant. Governed by one-electron transfer process (ETP) from the phenolics to the Ca-Mn-O perovskites, this direct oxidation proceeds in fast reaction kinetics with activation energy of 51.4 kJ/mol, which was comparable with those AOPs-based catalytic systems. Additionally, mineralization and polymerization reactions occurred on the Ca-Mn-O surface and ensured the complete removal of phenolics. The high spin state Mn(III) within Ca-Mn-O structure was the dominant active site for this ETP. The elongated axial Mn(III)–O bonds within the [MnO6] octahedron facilitated the acceptance of the electrons from the phenolics and thus promoted the initiation of the direct oxidation process. Mn(III) in the high spin state can also activate dissolved O2 to produce singlet oxygen (1O2) for a fast removal of phenolics. The mixed Mn(III)/Mn(IV) within Ca-Mn-O accelerated the ETP by enhancing the electrical conductivity. This efficient Ca-Mn-O-induced ETP for removal of organic contaminants casts off the dependence on external chemical and energy inputs and provides a sustainable approach for transforming the toxic organic pollutants into value-added polymers.

Keywords: Ca-Mn-O perovskites, surface direct oxidation, electron transfer process, spin state regulation

References(49)

[1]

Liu, Y.; Chen, C. M.; Duan, X. G.; Wang, S. B.; Wang, Y. X. Carbocatalytic ozonation toward advanced water purification. J. Mater. Chem. A 2021, 9, 18994–19024.

[2]

Ren, W.; Cheng, C.; Shao, P. H.; Luo, X. B.; Zhang, H.; Wang, S. B.; Duan, X. G. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 2022, 56, 78–97.

[3]

Jiang, J. J.; Zhao, Z. Q.; Gao, J. Y.; Li, T. R.; Li, M. Y.; Zhou, D. D.; Dong, S. S. Nitrogen vacancy-modulated peroxymonosulfate nonradical activation for organic contaminant removal via high-valent cobalt-oxo species. Environ. Sci. Technol. 2022, 56, 5611–5619.

[4]

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

[5]

He, S. X.; Chen, Y. X.; Li, X.; Zeng, L. X.; Zhu, M. S. Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: A critical review. ACS EST Eng. 2022, 2, 527–546.

[6]

Yu, L.; Zhang, G.; Liu, C. L.; Lan, H. C.; Liu, H. J.; Qu, J. H. Interface stabilization of undercoordinated iron centers on manganese oxides for nature-inspired peroxide activation. ACS Catal. 2018, 8, 1090–1096.

[7]

Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

[8]

Jin, X. G.; Wu, C. Y.; Tian, X. M.; Wang, P. X.; Zhou, Y. X.; Zuo, J. N. A magnetic-void-porous MnFe2O4/carbon microspheres nano-catalyst for catalytic ozonation: Preparation, performance and mechanism. Environ. Sci. Ecotechnol. 2021, 7, 100110.

[9]

Song, C. L.; Zhan, Q.; Liu, F.; Wang, C.; Li, H. C.; Wang, X.; Guo, X. F.; Cheng, Y. C.; Sun, W.; Wang, L. et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202200406.

[10]

Li, M. Q.; Liu, D. R.; Chen, X.; Yin, Z. H.; Shen, H. C.; Aiello, A.; McKenzie, K. R.; Jiang, N.; Li, X.; Wagner, M. J. et al. Radical-driven decomposition of graphitic carbon nitride nanosheets: Light exposure matters. Environ. Sci. Technol. 2021, 55, 12414–12423.

[11]

Wang, Y. X.; Li, X.; Liu, S. N.; Liu, Y.; Kong, T.; Zhang, H. Y.; Duan, X. G.; Chen, C. M.; Wang, S. B. Roles of catalyst structure and gas surface reaction in the generation of hydroxyl radicals for photocatalytic oxidation. ACS Catal. 2022, 12, 2770–2780.

[12]

Zhang, Y. J.; Huang, G. X.; Winter, L. R.; Chen, J. J.; Tian, L. L.; Mei, S. C.; Zhang, Z.; Chen, F.; Guo, Z. Y.; Ji, R. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 2022, 13, 3005.

[13]

Yang, Y. Y.; Zhang, P. P.; Hu, K. S.; Zhou, P.; Wang, Y. X.; Asif, A. H.; Duan, X. G.; Sun, H. Q.; Wang, S. B. Crystallinity and valence states of manganese oxides in Fenton-like polymerization of phenolic pollutants for carbon recycling against degradation. Appl. Catal. B:Environ. 2022, 315, 121593.

[14]

Zhu, S. S.; Ho, S. H.; Jin, C.; Duan, X. G.; Wang, S. B. Nanostructured manganese oxides: Natural/artificial formation and their induced catalysis for wastewater remediation. Environ. Sci. Nano 2020, 7, 368–396.

[15]

Madison, A. S.; Tebo, B. M.; Mucci, A.; Sundby, B.; Luther, G. W. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 2013, 341, 875–878.

[16]

Huang, J. Z.; Zhong, S. F.; Dai, Y. F.; Liu, C. C.; Zhang, H. C. Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation. Environ. Sci. Technol. 2018, 52, 11309–11318.

[17]

Wang, Z. Q.; Jia, H. Z.; Zheng, T.; Dai, Y. C.; Zhang, C.; Guo, X. T.; Wang, T. C.; Zhu, L. Y. Promoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: Synergistic effects of Mn3+ and oxygen vacancies. Appl. Catal. B:Environ. 2020, 272, 119030.

[18]

Fu, D.; Duan, L.; Jiang, C. J.; Zhang, T.; Chen, W. Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. Environ. Sci. Nano 2020, 7, 3840–3848.

[19]

Balgooyen, S.; Alaimo, P. J.; Remucal, C. K.; Ginder-Vogel, M. Structural transformation of MnO2 during the oxidation of bisphenol A. Environ. Sci. Technol. 2017, 51, 6053–6062.

[20]

Shaikh, N.; Taujale, S.; Zhang, H. C.; Artyushkova, K.; Ali, A. M. S.; Cerrato, J. M. Spectroscopic investigation of interfacial interaction of manganese oxide with triclosan, aniline, and phenol. Environ. Sci. Technol. 2016, 50, 10978–10987.

[21]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[22]

Sun, S. C.; Shen, G. Q.; Jiang, J. W.; Mi, W. B.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J. Boosting oxygen evolution kinetics by Mn-N-C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv. Energy Mater. 2019, 9, 1901505.

[23]

Zhu, S. J.; Li, L.; Liu, J. B.; Wang, H. T.; Wang, T.; Zhang, Y. X.; Zhang, L. L.; Ruoff, R. S.; Dong, F. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018, 12, 1033–1042.

[24]

Wang, K.; Han, C.; Shao, Z. P.; Qiu, J. S.; Wang, S. B.; Liu, S. M. Perovskite oxide catalysts for advanced oxidation reactions. Adv. Funct. Mater. 2021, 31, 2102089.

[25]

Lan, S. Y.; Yu, C.; Sun, F.; Chen, Y. X.; Chen, D. Y.; Mai, W.; Zhu, M. S. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792.

[26]

Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.

[27]

Wang, Y. X.; Chi, Z. X.; Chen, C. M.; Su, C.; Liu, D. Q.; Liu, Y.; Duan, X. G.; Wang, S. B. Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. Appl. Catal. B:Environ. 2020, 272, 118972.

[28]

Wang, Y. X.; Xie, Y. B.; Sun, H. Q.; Xiao, J. D.; Cao, H. B.; Wang, S. B. Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds. Catal. Sci. Technol. 2016, 6, 2918–2929.

[29]

Yang, X. F.; Fu, J. X.; Jin, C. J.; Chen, J.; Liang, C. L.; Wu, M. M.; Zhou, W. Z. Formation mechanism of CaTiO3 hollow crystals with different microstructures. J. Am. Chem. Soc. 2010, 132, 14279–14287.

[30]

Du, J.; Zhang, T. R.; Cheng, F. Y.; Chu, W. S.; Wu, Z. Y.; Chen, J. Nonstoichiometric perovskite CaMnO3-δ for oxygen electrocatalysis with high activity. Inorg. Chem. 2014, 53, 9106–9114.

[31]

Birkner, N.; Nayeri, S.; Pashaei, B.; Najafpour, M. M.; Casey, W. H.; Navrotsky, A. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. Proc. Natl. Acad. Sci. USA 2013, 110, 8801–8806.

[32]

Davranche, M.; Lacour, S.; Bordas, F.; Bollinger, J. C. An easy determination of the surface chemical properties of simple and natural solids. J. Chem. Educ. 2003, 80, 76.

[33]

Liu, W. F.; Sun, B.; Qiao, J. L.; Guan, X. H. Influence of pyrophosphate on the generation of soluble Mn(III) from reactions involving Mn oxides and Mn(VII). Environ. Sci. Technol. 2019, 53, 10227–10235.

[34]

Xiao, J. D.; Xie, Y. B.; Han, Q. Z.; Cao, H. B.; Wang, Y. J.; Nawaz, F.; Duan, F. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag+/TiO2: Influence of electron donating and withdrawing substituents. J. Hazard. Mater. 2016, 304, 126–133.

[35]

Yang, J. L.; Wang, X. D.; Wang, H.; Dong, F.; Zhu, M. S. CsPbBr3 perovskite nanocrystal: A robust photocatalyst for realizing NO abatement. ACS EST Eng. 2021, 1, 1021–1027.

[36]

Wang, Y. X.; Duan, X. G.; Xie, Y. B.; Sun, H. Q.; Wang, S. B. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways. ACS Catal. 2020, 10, 13383–13414.

[37]

Li, B. B.; Gutierrez, P. L.; Blough, N. V. Trace determination of hydroxyl radical in biological systems. Anal. Chem. 1997, 69, 4295–4302.

[38]

Wang, Z. Q.; Jia, H. Z.; Liu, Z. W.; Peng, Z. Y.; Dai, Y. C.; Zhang, C.; Guo, X. T.; Wang, T. C.; Zhu, L. Y. Greatly enhanced oxidative activity of δ-MnO2 to degrade organic pollutants driven by dominantly exposed {−111} facets. J. Hazard. Mater. 2021, 413, 125285.

[39]

Maitra, U.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R. Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 11704–11707.

[40]

Liu, Y. D.; Zhang, X. J.; Bian, J.; Sun, J. W.; Li, Z. J.; Khan, I.; Qu, Y.; Li, Z. B.; Jiang, Z. S.; Jing, L. Q. Promoted oxygen activation of layered micro-mesoporous structured titanium phosphate nanoplates by coupling nano-sized δ-MnO2 with surface pits for efficient photocatalytic oxidation of CO. Appl. Catal. B:Environ. 2019, 254, 260–269.

[41]

Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

[42]

Yu, G. F.; Wang, Y. X.; Cao, H. B.; Zhao, H.; Xie, Y. B. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification. Environ. Sci. Technol. 2020, 54, 5931–5946.

[43]

Shao, P. H.; Jing, Y. P.; Duan, X. G.; Lin, H. Y.; Yang, L. M.; Ren, W.; Deng, F.; Li, B. H.; Luo, X. B.; Wang, S. B. Revisiting the graphitized nanodiamond-mediated activation of peroxymonosulfate: Singlet oxygenation versus electron transfer. Environ. Sci. Technol. 2021, 55, 16078–16087.

[44]

Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Yuan, H. F.; Qu, S. L.; Zhang, X. B.; Song, G. S. et al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 2020, 6, 2314–2334.

[45]

Ukrainczyk, L.; McBride, M. B. Oxidation of phenol in acidic aqueous suspensions of manganese oxides. Clays Clay Miner. 1992, 40, 157–166.

[46]

Gao, Y.; Zhou, Y.; Pang, S. Y.; Jiang, J.; Yang, Z. F.; Shen, Y. M.; Wang, Z.; Wang, P. X.; Wang, L. H. New insights into the combination of permanganate and bisulfite as a novel advanced oxidation process: Importance of high valent manganese-oxo species and sulfate radical. Environ. Sci. Technol. 2019, 53, 3689–3696.

[47]

Chen, J.; Sun, B.; Zhu, Y. T.; Yang, Y. Q.; Guan, X. H. Unraveling the role of Mn(VI) and Mn(V) species in contaminant abatement by permanganate. Environ. Sci. Technol. Lett. 2022, 9, 446–451.

[48]

Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

[49]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

File
12274_2022_5624_MOESM1_ESM.pdf (6.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2022
Revised: 17 November 2022
Accepted: 27 February 2023
Published: 25 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgement

The authors greatly appreciate the financial supports from the National Natural Science Foundation of China (Nos. 21978324 and 22278436) and the Science Foundation of China University of Petroleum, Beijing (No. 2462021QNXZ009).

Return