Journal Home > Volume 16 , Issue 7

Light regulated ion transport across membranes is central to nature. Based on this, artificial nanofluidics with light driven ion transport behaviors has been developed for both fundamental study and practical applications. Here, we focus on recent progress in photothermal controlled ion transport systems and review the corresponding construction strategies in diverse photothermal nanofluidics with various dimensions and structures. We systematically emphasize the three underlying working principles including temperature gradient, water evaporation induced ion transport blockage, and evaporation gradient. On the basis of these fundamental research, photothermal regulated ion transport has been mainly introduced into ionic devices, desalination, and energy conversion. Furthermore, we provide some perspectives for the current challenges and future developments of this promising research field. We believe that this review could encourage further understanding and open the minds to develop new advances in this fertile research field.


menu
Abstract
Full text
Outline
About this article

Photothermal regulated ion transport in nanofluidics: From fundamental principles to practical applications

Show Author's information Pei Liu1Lei Jiang2Liping Wen2( )
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Light regulated ion transport across membranes is central to nature. Based on this, artificial nanofluidics with light driven ion transport behaviors has been developed for both fundamental study and practical applications. Here, we focus on recent progress in photothermal controlled ion transport systems and review the corresponding construction strategies in diverse photothermal nanofluidics with various dimensions and structures. We systematically emphasize the three underlying working principles including temperature gradient, water evaporation induced ion transport blockage, and evaporation gradient. On the basis of these fundamental research, photothermal regulated ion transport has been mainly introduced into ionic devices, desalination, and energy conversion. Furthermore, we provide some perspectives for the current challenges and future developments of this promising research field. We believe that this review could encourage further understanding and open the minds to develop new advances in this fertile research field.

Keywords: energy conversion, photothermal conversion, ion transport, nanofluidics, ion pump

References(91)

[1]

Abgrall, P.; Nguyen, N. T. Nanofluidic devices and their applications. Anal. Chem. 2008, 80, 2326–2341.

[2]

Cheng, L. J.; Guo, L. J. Nanofluidic diodes. Chem. Soc. Rev. 2010, 39, 923–938.

[3]

Piruska, A.; Gong, M. J.; Sweedler, J. V.; Bohn, P. W. Nanofluidics in chemical analysis. Chem. Soc. Rev. 2010, 39, 1060–1072.

[4]

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256.

[5]

Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901–911.

[6]

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

[7]

Wang, S. F.; Yang, L. X.; He, G. W.; Shi, B. B.; Li, Y. F.; Wu, H.; Zhang, R. N.; Nunes, S.; Jiang, Z. Y. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 2020, 49, 1071–1089.

[8]

Zhang, H. C.; Tian, Y.; Jiang, L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today 2016, 11, 61–81.

[9]

Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.

[10]

Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537–540.

[11]

Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

[12]

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

[13]

Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics. Science 2016, 351, 1395–1396.

[14]

Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.

[15]

Ou, R. W.; Zhang, H. C.; Truong, V. X.; Zhang, L.; Hegab, H. M.; Han, L.; Hou, J.; Zhang, X. W.; Deletic, A.; Jiang, L. et al. A sunlight-responsive metal-organic framework system for sustainable water desalination. Nat. Sustain. 2020, 3, 1052–1058.

[16]

Wang, Z. Z.; Ma, C.; Xu, C. Y.; Sinquefield, S. A.; Shofner, M. L.; Nair, S. Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat. Sustain. 2021, 4, 402–408.

[17]

Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Ma, R. Z.; Yuan, Q.; Duan, X. F. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057–1062.

[18]

Zhang, Z.; Wen, L. P.; Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 2018, 47, 322–356.

[19]

Fu, K. Y.; Kwon, S. R.; Han, D.; Bohn, P. W. Single entity electrochemistry in nanopore electrode arrays: Ion transport meets electron transfer in confined geometries. Acc. Chem. Res. 2020, 53, 719–728.

[20]

Wang, M.; Hou, Y. Q.; Yu, L. J.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

[21]

Wei, W. C.; Chen, X. J.; Wang, X. J. Nanopore sensing technique for studying the Hofmeister effect. Small 2022, 18, 2200921.

[22]

Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

[23]

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Transport in nanofluidic systems: A review of theory and applications. New J. Phys. 2010, 12, 015004.

[24]

Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C. Fundamental studies of nanofluidics: Nanopores, nanochannels, and nanopipets. Anal. Chem. 2015, 87, 172–187.

[25]

Zhang, H. C.; Li, X. Y.; Hou, J.; Jiang, L.; Wang, H. T. Angstrom-scale ion channels towards single-ion selectivity. Chem. Soc. Rev. 2022, 51, 2224–2254.

[26]

Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385–2401.

[27]

Zhang, Y. X.; Xiong, T.; Suresh, L.; Qu, H.; Zhang, X. P.; Zhang, Q.; Yang, J. C.; Tan, S. C. Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation. ACS Energy Lett. 2020, 5, 3397–3404.

[28]

Jiang, Y. N.; Ma, W. J.; Qiao, Y. J.; Xue, Y. F.; Lu, J. H.; Gao, J.; Liu, N. N.; Wu, F.; Yu, P.; Jiang, L. et al. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps. Angew. Chem., Int. Ed. 2020, 59, 12795–12799.

[29]

Cai, J. R.; Ma, W.; Hao, C. L.; Sun, M. Z.; Guo, J.; Xu, L. G.; Xu, C. L.; Kuang, H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021, 7, 1802–1826.

[30]

Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.

[31]

Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A. Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549–1564.

[32]

Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

[33]

Xiao, K.; Giusto, P.; Chen, F. X.; Chen, R. T.; Heil, T.; Cao, S. W.; Chen, L.; Fan, F. T.; Jiang, L. Light-driven directional ion transport for enhanced osmotic energy harvesting. Natl. Sci. Rev. 2021, 8, nwaa231.

[34]

Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

[35]

Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

[36]

Zhou, S. Y.; Qiu, Z.; Strømme, M.; Xu, C. Solar-driven ionic power generation via a film of nanocellulose @ conductive metal-organic framework. Energy Environ. Sci. 2021, 14, 900–905.

[37]

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

[38]

Wang, Z. X.; Horseman, T.; Straub, A. P.; Yip, N. Y.; Li, D. Y.; Elimelech, M.; Lin, S. H. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763.

[39]

Zheng, Y. J.; Caceres Gonzalez, R. A.; Hatzell, K. B.; Hatzell, M. C. Large-scale solar-thermal desalination. Joule 2021, 5, 1971–1986.

[40]

Shin, D.; Kang, G. M.; Gupta, P.; Behera, S.; Lee, H.; Urbas, A. M.; Park, W.; Kim, K. Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv. Opt. Mater. 2018, 6, 1800317.

[41]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343.

[42]

Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis. Nanoscale 2017, 9, 12068–12076.

[43]

Lei, Y. H.; Wang, W.; Wu, W. G.; Li, Z. H. Nanofluidic diode in a suspended nanoparticle crystal. Appl. Phys. Lett. 2010, 96, 263102.

[44]

Choi, E.; Wang, C.; Chang, G. T.; Park, J. High current ionic diode using homogeneously charged asymmetric nanochannel network membrane. Nano Lett. 2016, 16, 2189–2197.

[45]

Ouyang, W.; Han, J.; Wang, W. Nanofluidic crystals: Nanofluidics in a close-packed nanoparticle array. Lab Chip 2017, 17, 3006–3025.

[46]

Wang, Y. W.; Zhang, J. C.; Liang, W. K.; Yang, H.; Guan, T. F.; Zhao, B.; Sun, Y. H.; Chi, L. F.; Jiang, L. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem. 2022, 4, 1153–1168.

[47]

Li, Z. Q.; Wu, Z. Q.; Ding, X. L.; Wu, M. Y.; Xia, X. H. A solar thermoelectric nanofluidic device for solar thermal energy harvesting. CCS Chem. 2021, 3, 2174–2182.

[48]

Luo, Q. X.; Liu, P.; Fu, L.; Hu, Y. H.; Yang, L. S.; Wu, W. W.; Kong, X. Y.; Jiang, L.; Wen, L. P. Engineered cellulose nanofiber membranes with ultrathin low-dimensional carbon material layers for photothermal-enhanced osmotic energy conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223–13230.

[49]

Zhao, S. J.; Yan, L.; Cao, M. Y.; Huang, L.; Yang, K.; Wu, S. L.; Lan, M. H.; Niu, G. L.; Zhang, W. J. Near-infrared light-triggered lysosome-targetable carbon dots for photothermal therapy of cancer. ACS Appl. Mater. Interfaces 2021, 13, 53610–53617.

[50]

Lee, J.; Zambrano, B. L.; Woo, J.; Yoon, K.; Lee, T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications. Adv. Mater. 2020, 32, 1902532.

[51]

Liu, J. W.; Liang, H. W.; Yu, S. H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 2012, 112, 4770–4799.

[52]

Wu, Z. T.; Ji, P.; Wang, B. X.; Sheng, N.; Zhang, M. H.; Chen, S. Y.; Wang, H. P. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting. Nano Energy 2021, 80, 105554.

[53]

Chen, C.; Yang, G. L.; Liu, D.; Wang, X. G.; Kotov, N. A.; Lei, W. W. Aramid nanofiber membranes for energy harvesting from proton gradients. Adv. Funct. Mater. 2022, 32, 2102080.

[54]

Li, T.; Li, S. X.; Kong, W. Q.; Chen, C. J.; Hitz, E.; Jia, C.; Dai, J. Q.; Zhang, X.; Briber, R.; Siwy, Z. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.

[55]

Chen, W. S.; Yu, H. P.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 47, 2837–2872.

[56]

Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

[57]

Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.

[58]

Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.

[59]

Sui, X.; Yuan, Z. W.; Yu, Y. X.; Goh, K.; Chen, Y. 2D material based advanced membranes for separations in organic solvents. Small 2020, 16, 2003400.

[60]

Kang, Y.; Xia, Y.; Wang, H. T.; Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 2019, 29, 1902014.

[61]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[62]

Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

[63]

Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.

[64]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[65]

Wang, C.; Wang, Y. Z.; Jiang, X. T.; Xu, J. W.; Huang, W. C.; Zhang, F.; Liu, J. F.; Yang, F. M.; Song, Y. F.; Ge, Y. Q. et al. MXene Ti3C2Tx: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 2019, 7, 1900060.

[66]

Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247.

[67]

Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

[68]

Liu, P.; Sun, Y.; Zhu, C. C.; Niu, B.; Huang, X. D.; Kong, X. Y.; Jiang, L.; Wen, L. P. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett. 2020, 20, 3593–3601.

[69]

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

[70]

Liu, P.; Zhou, T.; Teng, Y. F.; Fu, L.; Hu, Y. H.; Lin, X. B.; Kong, X. Y.; Jiang, L.; Wen, L. P. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem. 2021, 3, 1325–1335.

[71]

Chen, K. X.; Yao, L. N.; Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 2019, 141, 8608–8615.

[72]

Hong, S.; Zou, G. D.; Kim, H.; Huang, D. Z.; Wang, P.; Alshareef, H. N. Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano 2020, 14, 9042–9049.

[73]

Lao, J. C.; Lv, R. J.; Gao, J.; Wang, A. X.; Wu, J. S.; Luo, J. Y. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano 2018, 12, 12464–12471.

[74]

Osterle, J. F. Electrokinetic energy conversion. J. Appl. Mech. 1964, 31, 161–164.

[75]

Daiguji, H.; Yang, P. D.; Szeri, A. J.; Majumdar, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4, 2315–2321.

[76]

Lao, J. C.; Wu, S.; Gao, J.; Dong, A. P.; Li, G. J.; Luo, J. Y. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 2020, 70, 104481.

[77]

Zhang, Z.; Kong, X. Y.; Xie, G. H.; Li, P.; Xiao, K.; Wen, L. P.; Jiang, L. “Uphill” cation transport: A bioinspired photo-driven ion pump. Sci. Adv. 2016, 2, e1600689.

[78]

Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

[79]

Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

[80]

Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

[81]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[82]

Yang, P. H.; Liu, K.; Chen, Q.; Li, J.; Duan, J. J.; Xue, G. B.; Xu, Z. S.; Xie, W. K.; Zhou, J. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 2017, 10, 1923–1927.

[83]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[84]

Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

[85]

Davidson, D. J. Exnovating for a renewable energy transition. Nat. Energy 2019, 4, 254–256.

[86]

Xian, W. P.; Zhang, P. C.; Zhu, C. J.; Zuo, X. H.; Ma, S. Q.; Sun, Q. Bionic thermosensation inspired temperature gradient sensor based on covalent organic framework nanofluidic membrane with ultrahigh sensitivity. CCS Chem. 2021, 3, 2464–2472.

[87]

Zuo, X. H.; Zhu, C. J.; Xian, W. P.; Meng, Q. W.; Guo, Q.; Zhu, X. C.; Wang, S.; Wang, Y. Q.; Ma, S. Q.; Sun, Q. Thermo-osmotic energy conversion enabled by covalent-organic-framework membranes with record output power density. Angew. Chem., Int. Ed. 2022, 61, e202116910.

[88]

Zhu, C. J.; Zuo, X. H.; Xian, W. P.; Guo, Q.; Meng, Q. W.; Wang, S.; Ma, S. Q.; Sun, Q. Integration of thermoelectric conversion with reverse electrodialysis for mitigating ion concentration polarization and achieving enhanced output power density. ACS Energy Lett. 2022, 7, 2937–2943.

[89]

Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

[90]

Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021, 37, 101073.

[91]

Zhao, J. Q.; Yang, Y. W.; Yang, C. H.; Tian, Y. P.; Han, Y.; Liu, J.; Yin, X. T.; Que, W. X. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196–16204.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 January 2023
Revised: 12 February 2023
Accepted: 27 February 2023
Published: 14 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research is funded by National Key R&D Program of China (Nos. 2022YFB3805904 and 2022YFB3805900) and the National Natural Science Foundation of China (Nos. 21625303, 21905287, and 21988102).

Return