AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gap engineering of sandwich plasmonic gap nanostructures for boosting plasmon-enhanced electrocatalysis

Lu Cheng1,2Fengxia Wu1Yu Tian1Xiali Lv1,3Fenghua Li1Guobao Xu1,3Hsien-Yi Hsu4,5Yongjun Zhang6Wenxin Niu1,3( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Yanshan Branch of Beijing Chemical Research Institute, Sinopec, Beijing 102500, China
University of Science and Technology of China, Hefei 230026, China
School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

Au@poly (o-phenylenediamine) (POPD)@Pd sandwich nanostructures were synthesized by in-situ reduction strategy. Under the optimal gap size of POPD, the plasma-enhanced ethanol oxidation reaction can enhance over 2.5 times. Meanwhile, a volcanic map was derived to describe the relationship between the catalytic activity and the gap size of plasmonic gap nanostructure (PGN) nano-catalyst.

Abstract

Plasmonic catalysis is emerging as a dynamic field in heterogeneous catalysis and holds great promise for the efficient utilization of solar energy. Central to the development of plasmonic catalysis is the design of efficient plasmonic nanocatalysts. In this report, plasmonic gap nanostructures (PGNs) on the basis of Au@poly(o-phenylenediamine) (POPD)@Pd sandwich nanostructures are synthesized as plasmonic nanocatalysts by an in-situ reduction synthetic strategy, which allows for the precise engineering of the POPD gap size between plasmonic Au and catalytic Pd components. The introduction of conducting POPD nanogap in PGNs not only effectively enhances their light harvesting capability, but also provides an effective charge transfer channel for harnessing the photogenerated hot charge carriers. In this respect, distinct gap-dependent performances in plasmon-enhanced electrocatalysis of ethanol oxidation reactions (EOR) are demonstrated with the PGN nanocatalysts and over 2.5 folds of enhancement can be achieved. A volcano plot is derived to describe the relationship between the catalytic activities and gap size of the PGN nanocatalysts, which is well explained by the interplay of their light harvesting and charge transport capabilities. These results highlight the importance of gap engineering in PGNs for plasmonic catalysis and offer the promise of developing efficient plasmonic nanocatalysts for other heterogeneous catalytic reactions.

Electronic Supplementary Material

Download File(s)
12274_2023_5620_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Kale, M. J.; Christopher, P. Plasmons at the interface. Science 2015, 349, 587–588.

[2]

Zhan, C.; Chen, X. J.; Yi, J.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2018, 2, 216–230.

[3]

Shahbazyan, T. V. Landau damping of surface plasmons in metal nanostructures. Phys. Rev. B 2016, 94, 235431.

[4]

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

[5]

Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714–1723.

[6]

Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72.

[7]

Kuppe, C.; Rusimova, K. R.; Ohnoutek, L.; Slavov, D.; Valev, V. K. “Hot” in plasmonics:Temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 2020, 8, 1901166.

[8]

Zhao, J.; Wang, J.; Brock, A. J.; Zhu, H. Y. Plasmonic heterogeneous catalysis for organic transformations. J. Photochem. Photobiol. C Photochem. Rev. 2022, 52, 100539.

[9]

Zheng, Z. K.; Tachikawa, T.; Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 2015, 137, 948–957.

[10]

Xiong, Y. J.; Ren, M. J.; Li, D. D.; Lin, B. L.; Zou, L. L.; Wang, Y. S.; Zheng, H. F.; Zou, Z. Q.; Zhou, Y.; Ding, Y. H. et al. Boosting electrocatalytic activities of plasmonic metallic nanostructures by tuning the kinetic pre-exponential factor. J. Catal. 2017, 354, 160–168.

[11]

Huang, L.; Zou, J. S.; Ye, J. Y.; Zhou, Z. Y.; Lin, Z.; Kang, X. W.; Jain, P. K.; Chen, S. W. Synergy between plasmonic and electrocatalytic activation of methanol oxidation on palladium-silver alloy nanotubes. Angew. Chem., Int. Ed. 2019, 58, 8794–8798.

[12]

Li, Q.; Ouyang, Y. X.; Li, H. L.; Wang, L. B.; Zeng, J. Photocatalytic conversion of methane: Recent advancements and prospects. Angew. Chem., Int. Ed. 2022, 61, e202108069.

[13]

Wan, R. D.; Liu, S. L.; Wang, Y.; Yang, Y.; Tian, Y.; Jain, P. K.; Kang, X. W. Hot carrier lifetimes and electrochemical water dissociation enhanced by nickel doping of a plasmonic electrocatalyst. Nano Lett. 2022, 22, 7819–7825.

[14]

Liu, D.; Xue, C. Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. 2021, 33, 2005738.

[15]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[16]

Ha, M. J.; Kin, J. H.; You, M.; Li, Q.; Fan, C. H.; Nam, J. M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208–12278.

[17]

Kim, J. M.; Lee, C.; Lee, Y.; Lee, J.; Park, S. J.; Park, S.; Nam, J. M. Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv. Mater. 2021, 33, 2006966.

[18]

Nam, J. M.; Oh, J. W.; Lee, H.; Suh, Y. D. Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755.

[19]

Jain, T.; Tang, Q. X.; Bjørnholm, T.; Nørgaard, K. Wet chemical synthesis of soluble gold nanogaps. Acc. Chem. Res. 2014, 47, 2–11.

[20]

Luo, S. H.; Hoff, B. H.; Maier, S. A.; De Mello, J. C. Scalable fabrication of metallic nanogaps at the sub-10 nm level. Adv. Sci. (Weinh.) 2021, 8, 2102756.

[21]

Gu, P. P.; Zhang, W.; Zhang, G. Plasmonic nanogaps: From fabrications to optical applications. Adv. Mater. Interfaces 2018, 5, 1800648.

[22]

Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J. A.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703.

[23]

Cheng, L.; Wu, F. X.; Bao, H. B.; Li, F. H.; Xu, G. B.; Zhang, Y. J.; Niu, W. X. Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-phenylenediamine. Small 2021, 17, 2104083.

[24]

Niu, W. X.; Li, Z. Y.; Shi, L. H.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J. A.; Xu, G. B. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 2008, 8, 4440–4444.

[25]

Niu, W. X.; Duan, Y. K.; Qing, Z. K.; Huang, H. J.; Lu, X. M. Shaping gold nanocrystals in dimethyl sulfoxide: Toward trapezohedral and bipyramidal nanocrystals enclosed by {311} facets. J. Am. Chem. Soc. 2017, 139, 5817–5826.

[26]

Stejskal, J. Polymers of phenylenediamines. Prog. Polym. Sci. 2015, 41, 1–31.

[27]

Kibis, L. S.; Titkov, A. I.; Stadnichenko, A. I.; Koscheev, S. V.; Boronin, A. I. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl. Surf. Sci. 2009, 255, 9248–9254.

[28]

Stakheev, A. Y.; Sachtler, W. M. H. Determination by X-ray photoelectron spectroscopy of the electronic state of Pd clusters in Y zeolite. J. Chem. Soc. Faraday Trans. 1991, 87, 3703–3708.

[29]

Niu, W. X.; Zhang, W.; Firdoz, S.; Lu, X. M. Dodecahedral gold nanocrystals: The missing Platonic shape. J. Am. Chem. Soc. 2014, 136, 3010–3012.

[30]

Bao, H. B.; Xia, S. Y.; Wu, F. X.; Li, F. H.; Zhang, L.; Yuan, Y. L.; Xu, G. B.; Niu, W. X. Surface engineering of Rh-modified Pd nanocrystals by colloidal underpotential deposition for electrocatalytic methanol oxidation. Nanoscale 2021, 13, 5284–5291.

[31]

Huang, H.; Zhang, L.; Lv, Z. H.; Long, R.; Zhang, C.; Lin, Y.; Wei, K. C.; Wang, C. M.; Chen, L.; Li, Z. Y. et al. Unraveling surface plasmon decay in core–shell nanostructures toward broadband. J. Am. Chem. Soc. 2016, 138, 6822–6828.

[32]

Tian, L.; Wang, C.; Zhao, H. W.; Sun, F. W.; Dong, H.; Feng, K.; Wang, P.; He, G. K.; Li, G. T. Rational approach to plasmonic dimers with controlled gap distance, symmetry, and capability of precisely hosting guest molecules in hotspot regions. J. Am. Chem. Soc. 2021, 143, 8631–8638.

[33]

Zhao, Y. H.; Wu, F. X.; Wei, J. P.; Sun, H. D.; Yuan, Y. L.; Bao, H. B.; Li, F. H.; Zhang, Z. C.; Han, S.; Niu, W. X. Designer gold-framed palladium nanocubes for plasmon-enhanced electrocatalytic. Chem.—Eur. J. 2022, 28, e202200494.

[34]

Hu, X.; Zou, J. S.; Gao, H. C.; Kang, X. W. Trimetallic Ru@AuPt core–shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. J. Colloid Interface Sci. 2020, 570, 72–79.

[35]

Sheng, T.; Xu, Y. F.; Jiang, Y. X.; Huang, L.; Tian, N.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577.

[36]

Chen, Z. Q.; Wen, J. B.; Wang, C. H.; Kang, X. W. Convex cube-shaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 2022, 18, 2204255.

[37]

Li, C. P.; Wang, P.; Tian, Y.; Xu, X. L.; Hou, H.; Wang, M. M.; Qi, G. H.; Jin, Y. D. Long-range plasmon field and plasmoelectric effect on catalysis revealed by shell-thickness-tunable pinhole-free Au@SiO2 core–shell nanoparticles: A case study of p-nitrophenol reduction. ACS Catal. 2017, 7, 5391–5398.

[38]

Bi, J. L.; Cai, H. R.; Wang, B.; Kong, C. C.; Yang, S. C. Localized surface plasmon enhanced electrocatalytic methanol oxidation of AgPt bimetallic nanoparticles with an ultra-thin shell. Chem. Commun. 2019, 55, 3943–3946.

[39]

Wang, Z. L.; Du, J.; Zhang, Y. Z.; Han, J. H.; Huang, S. Q.; Hirata, A.; Chen, M. W. Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. Nano Energy 2019, 56, 286–293.

[40]

Wen, M. C.; Mori, K.; Kuwahara, Y.; Yamashita, H. Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: Synergic boosting of H2 production from formic acid. ACS Energy Lett. 2017, 2, 1–7.

[41]

Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

[42]

Xu, X. Y.; Zhao, H.; Wang, R.; Zhang, Z. H.; Dong, X. F.; Pan, J.; Hu, J. G.; Zeng, H. B. Identification of few-layer ReS2 as photo-electro integrated catalyst for hydrogen evolution. Nano Energy 2018, 48, 337–344.

[43]

Ma, L.; Chen, Y. L.; Yang, D. J.; Li, H. X.; Ding, S. J.; Xiong, L.; Qin, P. L.; Chen, X. B. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 2020, 12, 4383–4392.

[44]

Kazuma, E.; Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 4800–4808.

[45]

Yuan, X.; Zhen, W. L.; Yu, S. J.; Xue, C. Plasmon coupling-induced hot electrons for photocatalytic hydrogen generation. Chem. An As. J. 2021, 16, 3683–3688.

[46]

Zhang, C. Y.; Jia, F.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

[47]

Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.

[48]

Christopher, P.; Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 2017, 68, 379–398.

[49]

Li, Y. X.; Wen, M. M.; Wang, Y.; Tian, G.; Wang, C. Y.; Zhao, J. C. Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3−x. Angew. Chem., Int. Ed. 2021, 60, 910–916.

[50]

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

[51]

Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656–665.

[52]

Al-Hossainy, A. F.; Bassyouni, M.; Zoromba, M. S. Elucidation of electrical and optical parameters of poly(o-anthranilic acid)-poly(o-amino phenol)/copper oxide nanocomposites thin films. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2572–2583.

[53]

Cheng, L.; Zhu, G. X.; Liu, G. N.; Zhu, L. Q. FDTD simulation of the optical properties for gold nanoparticles. Mater. Res. Express 2020, 7, 125009.

[54]

Wang, P. P.; Dai, W. J.; Ge, L.; Yan, M.; Ge, S. G.; Yu, J. H. Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos. Analyst 2013, 138, 939–945.

[55]

Ekande, O. S.; Kumar, M. Review on polyaniline as reductive photocatalyst for the construction of the visible light active heterojunction for the generation of reactive oxygen species. J. Environ. Chem. Eng. 2021, 9, 105725.

[56]

Yang, Z.; Kim, C.; Lee, K. Y.; Lee, M.; Appalakondaiah, S.; Ra, C. H.; Watanabe, K.; Taniguchi, T.; Cho, K.; Hwang, E.; Hone, J.; Yoo, W. J. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2-metal junction. Adv. Mater. 2019, 31, 1808231.

[57]

White, H. S.; Abruna, H. D.; Bard, A. J. Semiconductor electrodes: XLI. Improvement of performance of n-MoSe2 electrodes by electrochemical polymerization of o-phenylenediamine at surface imperfections. J. Electrochem. Soc. 1982, 129, 265–271.

[58]

Zhan, C.; Wang, Z. Y.; Zhang, X. G.; Chen, X. J.; Huang, Y. F.; Hu, S.; Li, J. F.; Wu, D. Y.; Moskovits, M.; Tian, Z. Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes. J. Am. Chem. Soc. 2019, 141, 8053–8057.

[59]

Zoromba, M. S.; Al-Hossainy, A. F.; Mahmoud, S. A.; Bourezgui, A.; Shaaban, E. R. Improvement of the thermal stability and optical properties for poly (ortho phenylene diamine) using soft templates. J. Mol. Struct. 2020, 1221, 128792.

[60]

Vadhva, P.; Hu, J.; Johnson, M. J.; Stocker, R.; Braglia, M.; Brett, D. J. L.; Rettie, A. J. E. Electrochemical impedance spectroscopy for all-solid-state batteries: Theory, methods and future outlook. ChemElectroChem 2021, 8, 1930–1947.

[61]

Magar, H. S.; Hassan, R. Y. A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors (Basel) 2021, 21, 6578.

[62]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[63]

Zhang, Y. F.; Zhang, J. B.; Huang, J. Potential-dependent volcano plot for oxygen reduction: Mathematical origin and implications for catalyst design. J. Phys. Chem. Lett. 2019, 10, 7037–7043.

Nano Research
Pages 8961-8969
Cite this article:
Cheng L, Wu F, Tian Y, et al. Gap engineering of sandwich plasmonic gap nanostructures for boosting plasmon-enhanced electrocatalysis. Nano Research, 2023, 16(7): 8961-8969. https://doi.org/10.1007/s12274-023-5620-3
Topics:

962

Views

4

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 19 January 2023
Revised: 22 February 2023
Accepted: 26 February 2023
Published: 20 April 2023
© Tsinghua University Press 2023
Return