Journal Home > Volume 16 , Issue 7

Electrochemical NO reduction reaction (NORR) to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3. In this contribution, within the framework of computational hydrogen model and constant-potential implicit solvent model, the NORR electrocatalyzed by a novel transition-metal-anchored SnOSe armchair nanotube (TM@SnOSe_ANT) was investigated using density functional theory calculations. Through the checking in terms of stability, activity, and selectivity, Sc- and Y@SnOSe_ANTs were screened out from the twenty-five candidates. Considering the effects of pH, solvent environment, as well as applied potential, only Sc@SnOSe_ANT is found to be most promising. The predicted surface area normalized capacitance is 11.4 μF/cm2, and the highest NORR performance can be achieved at the URHE of −0.58 V in the acid environment. The high activity originates from the mediate adsorption strength of OH. These findings add a new perspective that the nanotube can be served as a highly promising electrocatalyst towards NORR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical investigation on NO reduction electro-catalyzed by transition-metal-anchored SnOSe nanotubes

Show Author's information Renqiang ZhaoZengying MaYanghong YuXueqian XiaBowen SongTao Zhou( )Yucheng Huang( )
College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China

Abstract

Electrochemical NO reduction reaction (NORR) to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3. In this contribution, within the framework of computational hydrogen model and constant-potential implicit solvent model, the NORR electrocatalyzed by a novel transition-metal-anchored SnOSe armchair nanotube (TM@SnOSe_ANT) was investigated using density functional theory calculations. Through the checking in terms of stability, activity, and selectivity, Sc- and Y@SnOSe_ANTs were screened out from the twenty-five candidates. Considering the effects of pH, solvent environment, as well as applied potential, only Sc@SnOSe_ANT is found to be most promising. The predicted surface area normalized capacitance is 11.4 μF/cm2, and the highest NORR performance can be achieved at the URHE of −0.58 V in the acid environment. The high activity originates from the mediate adsorption strength of OH. These findings add a new perspective that the nanotube can be served as a highly promising electrocatalyst towards NORR.

Keywords: nanotube, density functional theory calculation, ammonia synthesis, NO removal, electrochemical NO reduction, constant-potential implicit solvent model, SnOSe

References(70)

[1]

Meng, D. M.; Zhan, W. C.; Guo, Y.; Guo, Y. L.; Wang, L.; Lu, G. Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance. ACS Catal. 2015, 5, 5973–5983.

[2]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[3]

Lee, T.; Bai, H. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review. AIMS Environ. Sci. 2016, 3, 261–289.

[4]

Topsøe, N. Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 1994, 265, 1217–1219.

[5]

Ma, S. B.; Zhao, X. Y.; Li, Y. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO. Appl. Catal. B:Environ. 2019, 248, 226–238.

[6]

Tursun, M.; Wu, C. Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Phys. Chem. Chem. Phys. 2021, 23, 19872–19883.

[7]

Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

[8]

de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode. Electrochim. Acta 2001, 46, 923–930.

[9]

Farberow, C. A.; Dumesic, J. A.; Mavrikakis, M. Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt (111). ACS Catal. 2014, 4, 3307–3319.

[10]

Katsounaros, I.; Figueiredo, M. C.; Chen, X. T.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes. ACS Catal. 2017, 7, 4660–4667.

[11]

Liu, N.; Wang, X. Y.; Wan, Y. L. First principle calculations of nitric oxide on metallic Pt (111) and Pt (100), and bimetallic Au/Pt (111) and Au/Pt (100) surfaces. Appl. Surf. Sci. 2015, 328, 591–595.

[12]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[13]

Zhang, B.; Fan, T. J.; Xie, N.; Nie, G. H.; Zhang, H. Versatile applications of metal single-atom@2D material nanoplatforms. Adv. Sci. 2019, 6, 1901787.

[14]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[15]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[16]

Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

[17]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[18]

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

[19]

Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.

[20]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[21]

Wu, H.; Li, X. X.; Zhang, R. Q.; Yang, J. L. Proposal of a stable B3S nanosheet as an efficient hydrogen evolution catalyst. J. Mater. Chem. A 2019, 7, 3752–3756.

[22]

Lv, X. S.; Wei, W.; Zhao, P.; Er, D.; Huang, B. B.; Dai, Y.; Jacob, T. Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction. J. Catal. 2019, 378, 97–103.

[23]

Ji, Y. J.; Dong, H. L.; Hou, T. J.; Li, Y. Y. Monolayer graphitic germanium carbide (g-GeC): The promising cathode catalyst for fuel cell and lithium-oxygen battery applications. J. Mater. Chem. A 2018, 6, 2212–2218.

[24]

He, B. L.; Shen, J. S.; Ma, D. W.; Lu, Z. S.; Yang, Z. X. Boron-doped C3N monolayer as a promising metal-free oxygen reduction reaction catalyst: A theoretical insight. J. Phys. Chem. C 2018, 122, 20312–20322.

[25]

Zhang, X.; Chen, A.; Zhang, Z. H.; Jiao, M. G.; Zhou, Z. Transition metal anchored C2N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 11446–11452.

[26]

Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

[27]

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

[28]

Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

[29]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[30]

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

[31]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[32]

Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction. Small Methods 2019, 3, 1800291.

[33]

Qin, Y. Y.; Li, Y.; Zhao, W. S.; Chen, S. H.; Wu, T. T.; Su, Y. Q. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 325–333.

[34]

Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2023, 16, 309–317.

[35]

Deng, D.; Song, B. Y.; Li, C.; Yang, L. M. High-throughput screening of transition-metal-atom-embedded parallel tetracyanoethylene 2D networks as single-atom electrocatalysts for ammonia synthesis and its underlying microscopic mechanisms. J. Phys. Chem. C 2022, 126, 20816–20830.

[36]

Liu, Y.; Song, B. Y.; Huang, C. X.; Yang, L. M. Dual transition metal atoms embedded in N-doped graphene for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2022, 10, 13527–13543.

[37]

Lv, S. Y.; Li, G. L.; Yang, L. M. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. J. Colloid Interface Sci. 2022, 621, 24–32.

[38]

Wang, X. L.; Yang, L. M. Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets. Appl. Surf. Sci. 2022, 576, 151839.

[39]

Wang, X. L.; Yang, L. M. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J. Mater. Chem. A 2022, 10, 1481–1496.

[40]

Zhao, M. R.; Song, B. Y.; Yang, L. M. Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl. Mater. Interfaces 2021, 13, 26109–26122.

[41]

Wang, Z. X.; Zhao, J. X.; Wang, J. Y.; Cabrera, C. R.; Chen, Z. F. A Co-N4 moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: A computational study. J. Mater. Chem. A 2018, 6, 7547–7556.

[42]

Algara-Siller, G.; Severin, N.; Chong, S. Y.; Björkman, T.; Palgrave, R. G.; Laybourn, A.; Antonietti, M.; Khimyak, Y. Z.; Krasheninnikov, A. V.; Rabe, J. P. et al. Triazine-based graphitic carbon nitride: A two-dimensional semiconductor. Angew. Chem., Int. Ed. 2014, 53, 7450–7455.

[43]

Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.

[44]

Wu, Q.; Wei, W.; Lv, X. S.; Wang, Y. Y.; Huang, B. B.; Dai, Y. Cu@g-C3N4: An efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution. J. Phys. Chem. C 2019, 123, 31043–31049.

[45]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.

[46]

Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482.

[47]

Zhao, H. Y.; Zhang, C. X.; Li, H.; Fang, J. One-dimensional nanomaterial supported metal single-atom electrocatalysts: Synthesis, characterization, and applications. Nano Sel. 2021, 2, 2072–2111.

[48]

Zhao, R. Q.; Luo, Y.; Jiang, F.; Dai, Y. X.; Ma, Z. Y.; Zhong, J. W.; Wu, P.; Zhou, T.; Huang, Y. C. Ultrahigh-stability SnOX (X = S, Se) nanotubes with a built-in electric field as a highly promising platform for sensing NH3, NO and NO2: A theoretical investigation. J. Mater. Chem. A 2022, 10, 7948–7959.

[49]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[50]

Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

[51]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[52]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[53]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[54]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[55]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[56]

Shuichi, N. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46.

[57]

Evans, D. J.; Holian, B. L. The nose-hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074.

[58]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[59]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

[60]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[61]

Hu, X.; Chen, S. Y.; Chen, L. T.; Tian, Y.; Yao, S.; Lu, Z. Y.; Zhang, X.; Zhou, Z. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction. Critical roles of coordinating pyrrolic N and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144–18152.

[62]
Rothenberg, G. Catalysis: Concepts and Green Applications, 2nd ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2017.
[63]

Chun, H. J.; Apaja, V.; Clayborne, A.; Honkala, K.; Greeley, J. Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt (100). ACS Catal. 2017, 7, 3869–3882.

[64]

Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.

[65]

Tursun, M.; Wu, C. Single transition metal atoms anchored on defective MoS2 monolayers for the electrocatalytic reduction of nitric oxide into ammonia and hydroxylamine. Inorg. Chem. 2022, 61, 17448–17458.

[66]

Wang, Y. Y.; Zhang, D. J.; Yu, Z. Y.; Liu, C. B. Mechanism of N2O formation during NO reduction on the Au (111) surface. J. Phys. Chem. C 2010, 114, 2711–2716.

[67]

Chun, H. J.; Zeng, Z. H.; Greeley, J. DFT insights into NO electrochemical reduction: A case study of Pt (211) and Cu (211) surfaces. ACS Catal. 2022, 12, 1394–1402.

[68]

Chen, Y.; Liu, Y. J.; Wang, H. X.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z.; Ding, Y. H. Silicon-doped graphene: An effective and metal-free catalyst for NO reduction to N2O. ACS Appl. Mater. Interfaces 2013, 5, 5994–6000.

[69]

Esrafili, M. D.; Asadollahi, S.; Heydari, S. A DFT study on NO reduction to N2O using Al- and P-doped hexagonal boron nitride nanosheets. J. Mol. Graph. Model. 2019, 89, 41–49.

[70]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

File
12274_2023_5619_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2022
Revised: 01 February 2023
Accepted: 26 February 2023
Published: 13 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21573002), Natural Science Funds for Distinguished Young Scholar of Anhui Province (No. 1908085J08), and the University Annual Scientific Research Plan of Anhui Province (Nos. 2022AH050209 and 2022AH010013).

Return