Journal Home > Volume 16 , Issue 5

Complex oxide thin films exhibit intriguing phenomena due to the coupling between multiple degrees of freedom through interfacial structural engineering. Atomic tailoring of structural parameters determines unique band structure and phonon modes, regulating emergent magnetic and electrical properties of oxide films. However, the construction of different strained and oriented domains in one intact oxide thin film is impossible using conventional means. Here we report the fabrication and quantitative structural analysis of La0.7Sr0.3MnO3 (LSMO) homostructures assisted by atomic-flat freestanding membranes. Pristine substrates and suspended membranes regulate the epitaxial strain and orientation of subsequently grown films. Our results demonstrate an ultrathin transition layer (~ 4 atomic layers) between freestanding membranes and LSMO films is formed due to the strain relaxation. This work offers a simple and scalable methodology for fabricating unprecedented innovative functional oxide homostructures through artificially controlled synthesis routes.


menu
Abstract
Full text
Outline
About this article

Lateral strain tailoring in manganite homostructures assisted by atomic-flat freestanding membranes

Show Author's information Yufei Wang1Yuchen Zhu2( )Shengru Chen3,4Dongke Rong3,4Qiao Jin3,4Er-Jia Guo3,4( )
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Physics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Complex oxide thin films exhibit intriguing phenomena due to the coupling between multiple degrees of freedom through interfacial structural engineering. Atomic tailoring of structural parameters determines unique band structure and phonon modes, regulating emergent magnetic and electrical properties of oxide films. However, the construction of different strained and oriented domains in one intact oxide thin film is impossible using conventional means. Here we report the fabrication and quantitative structural analysis of La0.7Sr0.3MnO3 (LSMO) homostructures assisted by atomic-flat freestanding membranes. Pristine substrates and suspended membranes regulate the epitaxial strain and orientation of subsequently grown films. Our results demonstrate an ultrathin transition layer (~ 4 atomic layers) between freestanding membranes and LSMO films is formed due to the strain relaxation. This work offers a simple and scalable methodology for fabricating unprecedented innovative functional oxide homostructures through artificially controlled synthesis routes.

Keywords: manganites, strain engineering, transmission electron microscopy, oxide homostructure, freestanding membranes

References(34)

[1]

Mannhart, J.; Schlom, D. G. Oxide interfaces-an opportunity for electronics. Science 2010, 327, 1607–1611.

[2]

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

[3]

Zhang, Z. C.; Xu, B.; Wang, X. Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 2014, 43, 7870–7886.

[4]
Cheng, Y. X.; Zhao, S. S.; Zhou, Z. Y.; Liu, M. Recent development of E-field control of interfacial magnetism in multiferroic heterostructures. Nano Res., in press, DOI: 10.1007/s12274-022-5125-5.
[5]

Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Wang, J.; Yu, A. M. Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 2018, 6, 13509–13537.

[6]

Cao, Y. D.; Sun, Y. H.; Yang, H. H.; Zhou, L.; Huang, Q. M.; Qi, J. J.; Guan, P. F.; Liu, K. H.; Wang, R. M. Directional migration and rapid coalescence of Au nanoparticles on anisotropic ReS2. Nano Lett. 2023, 23, 1211–1218.

[7]

Zhang, B.; Yun, C.; Wu, H.; Zhao, Z. J.; Zeng, Y.; Liang, D.; Shen, T.; Zhang, J. N.; Huang, X. X.; Song, J. P. et al. Two-dimensional wedge-shaped magnetic EuS: Insight into the substrate step-guided epitaxial synthesis on sapphire. J. Am. Chem. Soc. 2022, 144, 19758–19769.

[8]

Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J. D.; Schlepütz, C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.; Dedon, L. R. et al. Observation of polar vortices in oxide superlattices. Nature 2016, 530, 198–201.

[9]

Yao, L. D.; Inkinen, S.; Van Dijken, S. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 2017, 8, 14544.

[10]

Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

[11]

Huang, J. J.; Wang, H.; Sun, X.; Zhang, X. H.; Wang, H. Y. Multifunctional La0.67Sr0.33MnO3 (LSMO) thin films integrated on mica substrates toward flexible spintronics and electronics. ACS Appl. Mater. Interfaces 2018, 10, 42698–42705.

[12]

Hu, K. J.; Zhang, X. Y.; Chen, P. F.; Lin, R. J.; Zhu, J. L.; Huang, Z.; Du, H. F.; Song, D. S.; Ge, B. H. Atomic-scale observation of strain-dependent reversible topotactic transition in La0.7Sr0.3MnOx films under an ultra-high vacuum environment. Mater. Today Phys. 2022, 29, 100922.

[13]

Yousefi Sarraf, S.; Singh, S.; Garcia-Castro, A. C.; Trappen, R.; Mottaghi, N.; Cabrera, G. B.; Huang, C. Y.; Kumari, S.; Bhandari, G.; Bristow, A. D. et al. Surface recombination in ultra-fast carrier dynamics of perovskite oxide La0.7Sr0.3MnO3 thin films. ACS Nano 2019, 13, 3457–3465.

[14]

Srinivasan, G.; Rasmussen, E. T.; Levin, B. J.; Hayes, R. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 2002, 65, 134402.

[15]

Huang, B. C.; Yu, P.; Chu, Y. H.; Chang, C. S.; Ramesh, R.; Dunin-Borkowski, R. E.; Ebert, P.; Chiu, Y. P. Atomically resolved electronic states and correlated magnetic order at termination engineered complex oxide heterointerfaces. ACS Nano 2018, 12, 1089–1095.

[16]

Biegalski, M. D.; Dörr, K.; Kim, D. H.; Christen, H. M. Applying uniform reversible strain to epitaxial oxide films. Appl. Phys. Lett. 2010, 96, 151905.

[17]

Mundy, J. A.; Hikita, Y.; Hidaka, T.; Yajima, T.; Higuchi, T.; Hwang, H. Y.; Muller, D. A.; Kourkoutis, L. F. Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition. Nat. Commun. 2014, 5, 3464.

[18]

Navasery, M.; Halim, S. A.; Bahmanrokh, G.; Erfani, H. M.; Soltani, N.; Dehzangi, A.; Kamalianfar, A.; Din, F. U.; Abdolmohammadi, S.; Chen, S. K. et al. Characterization and conduction mechanism of La5/8Sr3/8MnO3 thin films prepared by pulsed laser deposition on different substrates. Int. J. Electrochem. Sci. 2013, 8, 6905–6921.

[19]

Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Zheng, R. K.; Chan, H. L. W. Enhanced dielectric properties of highly (100)-oriented Ba(Zr, Ti)O3 thin films grown on La0.7Sr0.3MnO3 bottom layer. J. Appl. Phys. 2006, 100, 114105.

[20]

Samet, L.; Imhoff, D.; Maurice, J. L.; Contour, J. P.; Gloter, A.; Manoubi, T.; Fert, A.; Colliex, C. EELS study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions. Eur. Phys. J. B Condens. Matter Complex Syst. 2003, 34, 179–192.

[21]

Sheng, Z. G.; Nakamura, M.; Koshibae, W.; Makino, T.; Tokura, Y.; Kawasaki, M. Magneto-tunable photocurrent in manganite-based heterojunctions. Nat. Commun. 2014, 5, 4584.

[22]

Davydenko, A. V.; Kozlov, A. G.; Chebotkevich, L. A. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111). J. Appl. Phys. 2014, 116, 143901.

[23]

Pandurangi, S. S.; Kulkarni, S. S. Mechanics of wrinkling of a thin film bonded to a compliant substrate under the influence of spatial thermal modulation. Int. J. Solids Struct. 2015, 62, 124–133.

[24]

Cortie, D. L.; Shueh, C.; Lai, B. C.; Pong, P. W. T.; Lierop, J. V.; Klose, F.; Lin, K. W. The effect of single crystalline substrates and ion-beam bombardment on exchange bias in nanocrystalline NiO/Ni80Fe20 bilayers. IEEE Trans. Magn. 2014, 50, 1–4.

[25]

Wu, P. C.; Wei, C. C.; Zhong, Q. L.; Ho, S. Z.; Liou, Y. D.; Liu, Y. C.; Chiu, C. C.; Tzeng, W. Y.; Chang, K. E.; Chang, Y. W. et al. Twisted oxide lateral homostructures with conjunction tunability. Nat. Commun. 2022, 13, 2565.

[26]

Chen, S. R.; Zhang, Q. H.; Rong, D. K.; Xu, Y.; Zhang, J. F.; Pei, F. F.; Bai, H.; Shang, Y. X.; Lin, S.; Jin, Q. et al. Braiding lateral morphotropic grain boundaries in homogenetic oxides. Adv. Mater. 2023, 35, 2206961.

[27]

Lu, D.; Baek, D. J.; Hong, S. S.; Kourkoutis, L. F.; Hikita, Y.; Hwang, H. Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260.

[28]

Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

[29]

Dong, G. H.; Li, S. Z.; Yao, M. T.; Zhou, Z. Y.; Zhang, Y. Q.; Han, X.; Luo, Z. L.; Yao, J. X.; Peng, B.; Hu, Z. Q. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019, 366, 475–479.

[30]

Moon, E. J.; He, Q.; Ghosh, S.; Kirby, B. J.; Pantelides, S. T.; Borisevich, A. Y.; May, S. J. Structural “δ doping” to control local magnetization in isovalent oxide heterostructures. Phys. Rev. Lett. 2017, 119, 197204.

[31]

De Backer, A.; Van Den Bos, K. H. W.; Van Den Broek, W.; Sijbers, J.; Van Aert, S. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy 2016, 171, 104–116.

[32]

Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.

[33]

Zhu, Y. C.; Sun, Y. H.; Zhang, H. Z.; He, Y.; Liu, W.; Wang, R. M. Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size. Nano Res. 2022, 15, 8493–8501.

[34]
Zhao, H. F. ; Zhu, Y. C. ; Ye, H. Y. ; He, Y. ; Li, H. ; Sun, Y. F. ; Yang, F. ; Wang, R. M. Atomic-scale structure dynamics of nanocrystals revealed by in-situ and environmental transmission electron microscopy. Adv. Mater., in press, DOI: 10.1002/adma.202206911.
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 January 2023
Revised: 15 February 2023
Accepted: 24 February 2023
Published: 19 April 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2020YFA0309100), the National Natural Science Foundation of China (Nos. 51971025, 12034002, 11974390, U22A20263, and 52250308), the Beijing Natural Science Foundation (No. 2212034), the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology (No. HT-CSNS-DG-CD-0080/2021), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No. XDB33030200).

Return