Journal Home > Volume 16 , Issue 7

Arsenic(II) sulfide is a stable inorganic arsenic compound with a different valence from arsenic trioxide, and has been widely applied to treat various diseases with low toxic side effects for a long time. However, its low solubility and complicated formulations restrict its further applications in modern medical industry. Meanwhile, as the tumour with the highest incidence rate among women, the low recurrence risk of breast cancer has been confirmed to be closely related to the high infiltration of immune cells. Herein, we synthesized and filtered novel biocompatible PEGylated arsenic(II) sulfide nanocrystals AsS@PEG with a size of 93.14 ± 0.49 nm by the gel method, which displayed excellent anticancer and immune activation activity in breast cancer model. Proteomic analysis suggested that the AsS@PEG induce ferroptosis in cancer cells and further activate antitumour immune responses via B-cell lymphoma 9-like (BCL9L) protein inhibition. Furthermore, mechanism studies revealed notable glutathione peroxidase 4 (GPX4) downregulation in cancer cells, dendritic cells (DCs) maturation and subsequent effector CD8+ T-cells production induced by the AsS@PEG in the tumour microenvironment. This study highlights biocompatible arsenic(II) sulfide nanocrystals that induce ferroptotic cell death and activate antitumour immune responses, providing insights into the path towards the immunotherapy assisted chemotherapy for breast cancer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ferroptosis-inducing inorganic arsenic(II) sulfide nanocrystals enhance immune activation

Show Author's information Jingyi Zhang1Yue Qin1Zhicheng Wang2Wei Zhang2Shengjin Liu3Wei Wei2( )Xiuxiu Wang1( )Jing Zhao1( )
Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
School of Life Sciences, Nanjing University, Nanjing 210023, China
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

Abstract

Arsenic(II) sulfide is a stable inorganic arsenic compound with a different valence from arsenic trioxide, and has been widely applied to treat various diseases with low toxic side effects for a long time. However, its low solubility and complicated formulations restrict its further applications in modern medical industry. Meanwhile, as the tumour with the highest incidence rate among women, the low recurrence risk of breast cancer has been confirmed to be closely related to the high infiltration of immune cells. Herein, we synthesized and filtered novel biocompatible PEGylated arsenic(II) sulfide nanocrystals AsS@PEG with a size of 93.14 ± 0.49 nm by the gel method, which displayed excellent anticancer and immune activation activity in breast cancer model. Proteomic analysis suggested that the AsS@PEG induce ferroptosis in cancer cells and further activate antitumour immune responses via B-cell lymphoma 9-like (BCL9L) protein inhibition. Furthermore, mechanism studies revealed notable glutathione peroxidase 4 (GPX4) downregulation in cancer cells, dendritic cells (DCs) maturation and subsequent effector CD8+ T-cells production induced by the AsS@PEG in the tumour microenvironment. This study highlights biocompatible arsenic(II) sulfide nanocrystals that induce ferroptotic cell death and activate antitumour immune responses, providing insights into the path towards the immunotherapy assisted chemotherapy for breast cancer.

Keywords: ferroptosis, immune activation, arsenic sulfide, immunogenic cell death (ICD)

References(38)

[1]

Wang, Z. Y.; Chen, Z. Acute promyelocytic leukemia: From highly fatal to highly curable. Blood 2008, 111, 2505–2515.

[2]

Quintas-Cardama, A.; Verstovsek, S.; Freireich, E.; Kantarjian, H.; Chen, Y. W.; Zingaro, R. Chemical and clinical development of darinaparsin, a novel organic arsenic derivative. Anti-Cancer Agents Med. Chem. 2008, 8, 904–909.

[3]

Lu, D. P.; Qiu, J. Y.; Jiang, B.; Wang, Q.; Liu, K. Y.; Liu, Y. R.; Chen, S. S. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: A pilot report. Blood 2002, 99, 3136–3143.

[4]

Wu, J. Z.; Shao, Y. B.; Liu, J. L.; Chen, G.; Ho, P. C. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J. Ethnopharmacol. 2011, 135, 595–602.

[5]

Zhu, H. H.; Hu, J.; Lo-Coco, F.; Jin, J. The simpler, the better: Oral arsenic for acute promyelocytic leukemia. Blood 2019, 134, 597–605.

[6]

Deng, G.; Cassileth, B. Complementary or alternative medicine in cancer care-myths and realities. Nat. Rev. Clin. Oncol. 2013, 10, 656–664.

[7]

Wang, X. X.; Hu, Y.; Mo, J. B.; Zhang, J. Y.; Wang, Z. Z.; Wei, W.; Li, H. L.; Xu, Y.; Ma, J.; Zhao, J. et al. Arsenene: A potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins. Angew. Chem., Int. Ed. 2020, 59, 5151–5158.

[8]

Kong, N.; Zhang, H. J.; Feng, C.; Liu, C.; Xiao, Y. F.; Zhang, X. C.; Mei, L.; Kim, J. S.; Tao, W.; Ji, X. Y. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 2021, 12, 4777.

[9]

Liu, C.; Sun, S.; Feng, Q.; Wu, G. W.; Wu, Y. T.; Kong, N.; Yu, Z. S.; Yao, J. L.; Zhang, X. C.; Chen, W. et al. Arsenene nanodots with selective killing effects and their low-dose combination with ß-elemene for cancer therapy. Adv. Mater. 2021, 33, 2102054.

[10]

Peng, Y. B.; Zhao, Z. L.; Liu, T.; Li, X.; Hu, X. X.; Wei, X. P.; Zhang, X. B.; Tan, W. H. Smart human-serum-albumin-As2O3 nanodrug with self-amplified folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew. Chem., Int. Ed. 2017, 56, 10845–10849.

[11]

Wang, J. Z.; Lin, M.; Zhang, T. Y.; Yan, Y. L.; Ho, P. C.; Xu, Q. H.; Loh, K. P. Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. J. Am. Chem. Soc. 2008, 130, 11596–11597.

[12]

Wang, J. Z.; Loh, K. P.; Wang, Z.; Yan, Y. L.; Zhong, Y. L.; Xu, Q. H.; Ho, P. C. Fluorescent nanogel of arsenic sulfide nanoclusters. Angew. Chem., Int. Ed. 2009, 48, 6282–6285.

[13]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:Cancer J. Clin. 2021, 71, 209–249.

[14]

Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690.

[15]

Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers. 2019, 5, 66.

[16]

Ye, Y. S.; Ricard, L.; Siblany, L.; Stocker, N.; De Vassoigne, F.; Brissot, E.; Lamarthée, B.; Mekinian, A.; Mohty, M.; Gaugler, B. et al. Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition. Acta Pharm. Sin. B 2020, 10, 1061–1072.

[17]

Trumpp, A.; Essers, M.; Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 2010, 10, 201–209.

[18]

Bobé, P.; Bonardelle, D.; Benihoud, K.; Opolon, P.; Chelbi-Alix, M. K. Arsenic trioxide: A promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 2006, 108, 3967–3975.

[19]

Wang, L.; Wang, R.; Fan, L.; Liang, W. T.; Liang, K.; Xu, Y. X.; Peng, G. Z.; Ye, Q. F. Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol. Immunol. 2017, 81, 118–126.

[20]

Abermann, R.; Bahl, C. P.; Marians, K. J.; Salpeter, M. M.; Wu, R. Studies on the lactose operon: III. Visualization and physical mapping of the lactose repressor-operator complex. J. Mol. Biol. 1976, 100, 109–114.

[21]

Wagner, C. D.; Passoja, D. E.; Hillery, H. F.; Kinisky, T. G.; Six, H. A.; Jansen, W. T.; Taylor, J. A. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J. Vac. Sci. Technol. 1982, 21, 933–944.

[22]

Lentz, B. R. PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J. 2007, 36, 315–326.

[23]

Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010, 31, 7606–7619.

[24]

Lai, S. C.; Chen, Y.; Yang, F.; Xiao, W. D.; Liu, Y.; Wang, C. Quantitative site-specific chemoproteomic profiling of protein lipoylation. J. Am. Chem. Soc. 2022, 144, 10320–10329.

[25]

Yang, W. S.; Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008, 15, 234–245.

[26]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[27]

Sampietro, J.; Dahlberg, C. L.; Cho, U. S.; Hinds, T. R.; Kimelman, D.; Xu, W. Q. Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol. Cell 2006, 24, 293–300.

[28]

Spranger, S.; Bao, R. Y.; Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235.

[29]

Feng, M.; Wu, Z. E.; Zhou, Y.; Wei, Z.; Tian, E. M.; Mei, S. L.; Zhu, Y. Y.; Liu, C. L.; He, F. L.; Li, H. Y. et al. BCL9 regulates CD226 and CD96 checkpoints in CD8+ T cells to improve PD-1 response in cancer. Signal Transduct. Target. Ther. 2021, 6, 313.

[30]

Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72.

[31]

Chen, B. M.; Cheng, T. L.; Roffler, S. R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 2021, 15, 14022–14048.

[32]

Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J. Y.; Afonin, K. A.; Dobrovolskaia, M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv. Drug. Deliv. Rev. 2022, 180, 114079.

[33]

Chen, C.; Wang, Z. Y.; Jia, S. R.; Zhang, Y.; Ji, S. L.; Zhao, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Shi, Y. et al. Evoking highly immunogenic ferroptosis aided by intramolecular motion-induced photo-hyperthermia for cancer therapy. Adv. Sci. 2022, 9, 2104885.

[34]

Zhou, Z. W.; Liang, H.; Yang, R. X.; Yang, Y.; Dong, J. W.; Di, Y. X.; Sun, M. J. Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of "Cold" tumor. Angew. Chem., Int. Ed. 2022, 61, e202202843.

[35]

Song, R. D.; Li, T. L.; Ye, J. Y.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y. J.; Zhu, Q. W.; Xu, Z. A. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 2021, 33, 2101155.

[36]

Jiang, Q.; Wang, K.; Zhang, X. Y.; Ouyang, B. S.; Liu, H. X.; Pang, Z. Q.; Yang, W. L. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 2020, 16, 2001704.

[37]

Wang, W. J.; Ling, Y. Y.; Zhong, Y. M.; Li, Z. Y.; Tan, C. P.; Mao, Z. W. Ferroptosis-enhanced cancer immunity by a ferrocene-appended iridium(III) diphosphine complex. Angew. Chem., Int. Ed. 2022, 61, e202115247.

[38]

Wang, L.; Zhou, G. B.; Liu, P.; Song, J. H.; Liang, Y.; Yan, X. J.; Xu, F.; Wang, B. S.; Mao, J. H.; Shen, Z. X. et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 4826–4831.

File
12274_2023_5617_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2022
Revised: 18 February 2023
Accepted: 24 February 2023
Published: 25 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22207053, 91753121, 21872069, 51761135104, 21731004 and 91953201), the Shenzhen Basic Research Program (Nos. JCYJ20170413150538897 and JCYJ20180508182240106), the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600 and 2015CB659300), the Natural Science Foundation of Jiangsu Province (Nos. BK20220764, BK20180008 and BK20202004), The Fundamental Research Funds for the Central Universities, 2021 Strategic Research Project of the Science and Technology Commission of the Ministry of Education of China. We thank Shanghai Applied Protein Technology Co., Ltd., and OE Biotech Co., Ltd. (Shanghai, China) for providing technological assistance.

Return