Journal Home > Volume 16 , Issue 9

Dry ion-conducting elastomers (ICEs) are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices. Nevertheless, the poor interface between the ICEs and the dielectric material is one of the issues hindering the application of the stretchable iontronic device. Herein, a polydimethylsiloxane (PDMS) based ion-conducting elastomer with dynamic crosslinking structures is reported, which achieves the stretchability of 475% and healing efficiency of 99%. More importantly, a robust interface bonding can be generated between the electrode and the dielectric material, which is beneficial to enhance the performance and lifespan of the flexible iontronic devices. Using this PDMS based ICE as the electrode and PDMS as the dielectric material, two stretchable iontronic devices (triboelectric nanogenerator and capacitive pressure sensor) are realized with overall self-healing and stretchable capabilities. These findings provide a promising strategy to achieve integrate stretchable iontronics or electronics with a robust interface between the electrode and dielectric materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stretchable iontronics with robust interface bonding between dielectric and ion-conducting elastomers

Show Author's information Zhongpeng Li1,2Panpan Zhang2( )Yangshi Shao2,3Zi-Hao Guo2,3Xiong Pu1,2,3( )
School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Dry ion-conducting elastomers (ICEs) are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices. Nevertheless, the poor interface between the ICEs and the dielectric material is one of the issues hindering the application of the stretchable iontronic device. Herein, a polydimethylsiloxane (PDMS) based ion-conducting elastomer with dynamic crosslinking structures is reported, which achieves the stretchability of 475% and healing efficiency of 99%. More importantly, a robust interface bonding can be generated between the electrode and the dielectric material, which is beneficial to enhance the performance and lifespan of the flexible iontronic devices. Using this PDMS based ICE as the electrode and PDMS as the dielectric material, two stretchable iontronic devices (triboelectric nanogenerator and capacitive pressure sensor) are realized with overall self-healing and stretchable capabilities. These findings provide a promising strategy to achieve integrate stretchable iontronics or electronics with a robust interface between the electrode and dielectric materials.

Keywords: triboelectric nanogenerator, pressure sensor, ion-conducting elastomers, robust interface, iontronics

References(59)

[1]

Jung, D.; Lim, C.; Shim, H. J.; Kim, Y.; Park, C.; Jung, J.; Han, S. I.; Sunwoo, S. H.; Cho, K. W.; Cha, G. D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021, 373, 1022–1026.

[2]

Benight, S. J.; Wang, C.; Tok, J. B. H.; Bao, Z. N. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 2013, 38, 1961–1977.

[3]

Bhatnagar, P.; Hong, J.; Patel, M.; Kim, J. Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 2022, 91, 106676.

[4]

Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.

[5]

Chen, F.; Huang, Q. Y.; Zheng, Z. J. Permeable conductors for wearable and on-skin electronics. Small Structures 2022, 3, 2100135.

[6]

Lee, Y.; Oh, J. Y.; Xu, W. T.; Kim, O.; Kim, T. R.; Kang, J.; Kim, Y.; Son, D.; Tok, J. B. H.; Park, M. J. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 2018, 4, eaat7387.

[7]

Sun, H. Y.; Lu, Y.; Chen, Y. Y.; Yue, Y. Y.; Jiang, S. H.; Xu, X. W.; Mei, C. T.; Xiao, H. N.; Han, J. Q. Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydr. Polym. 2022, 296, 119891.

[8]

Roach, D. J.; Yuan, C.; Kuang, X.; Li, V. C. F.; Blake, P.; Romero, M. L.; Hammel, I.; Yu, K.; Qi, H. J. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 2019, 11, 19514–19521.

[9]

Guo, Z. H.; Wang, H. L.; Shao, J. J.; Shao, Y. S.; Jia, L. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 2022, 8, eabo5201.

[10]

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

[11]

Sun, L. J.; Huang, H. F.; Ding, Q. Y.; Guo, Y. F.; Sun, W.; Wu, Z. C.; Qin, M. L.; Guan, Q. B.; You, Z. W. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2022, 4, 98–107.

[12]

Wang, R.; Han, L.; Wu, C. G.; Dong, Y. P.; Zhao, X. G. Localizable, identifiable, and perceptive untethered light-driven soft crawling robot. ACS Appl. Mater. Interfaces 2022, 14, 6138–6147.

[13]

Chen, Z. H.; Fang, R.; Li, W.; Guan, J. G. Stretchable transparent conductors: From micro/macromechanics to applications. Adv. Mater. 2019, 31, 1900756.

[14]

De Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes. Smart Mater. Struct. 2018, 27, 074002.

[15]

Liao, X. Q.; Zhang, Z.; Liang, Q. J.; Liao, Q. L.; Zhang, Y. Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold nanofilms@paper substrate. ACS Appl. Mater. Interfaces 2017, 9, 4151–4158.

[16]

Lee, H.; Lee, G.; Yun, J.; Keum, K.; Hong, S. Y.; Song, C.; Kim, J. W.; Lee, J. H.; Oh, S. Y.; Kim, D. S. et al. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chem. Eng. J. 2019, 366, 62–71.

[17]

Gonzalez, M.; Axisa, F.; Bulcke, M. V.; Brosteaux, D.; Vandevelde, B.; Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 2008, 48, 825–832.

[18]

Kim, K. H.; Vural, M.; Islam, M. F. Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 2011, 23, 2865–2869.

[19]

Nayak, P. K. Pulsed-grown graphene for flexible transparent conductors. Nanoscale Adv. 2019, 1, 1215–1223.

[20]

Jung, J.; Cho, H.; Yuksel, R.; Kim, D.; Lee, H.; Kwon, J.; Lee, P.; Yeo, J.; Hong, S.; Unalan, H. E. et al. Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 2019, 11, 20356–20378.

[21]

Kim, Y.; Kweon, O. Y.; Won, Y.; Oh, J. H. Deformable and stretchable electrodes for soft electronic devices. Macromol. Res. 2019, 27, 625–639.

[22]

Kong, W. B.; Yang, Y. Y.; Wang, Y. J.; Cheng, H. F.; Yan, P. Y.; Huang, L.; Ning, J. Y.; Zeng, F. H.; Cai, X. F.; Wang, M. An ultra-low hysteresis, self-healing, and stretchable conductor based on dynamic disulfide covalent adaptable networks. J. Mater. Chem. A 2022, 10, 2012–2020.

[23]

Feng, J. N.; Wang, L.; Chen, Y. J.; Wang, P. Y.; Zhang, H. R.; He, X. M. PEO based polymer-ceramic hybrid solid electrolytes: A review. Nano Converg. 2021, 8, 2.

[24]

Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

[25]

Yiming, B.; Han, Y.; Han, Z. L.; Zhang, X. N.; Li, Y.; Lian, W. Z.; Zhang, M. Q.; Yin, J.; Sun, T. L.; Wu, Z. L. et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021, 33, 2006111.

[26]

Shi, P. R.; Wang, Y. F.; Wan, K. N.; Zhang, C.; Liu, T. X. A waterproof ion-conducting fluorinated elastomer with 6000% stretchability, superior ionic conductivity, and harsh environment tolerance. Adv. Funct. Mater. 2022, 32, 2112293.

[27]

Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147–6155.

[28]

Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing, and recyclability. Nat. Commun. 2022, 13, 4868.

[29]

Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984–987.

[30]

Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commun. 2018, 9, 2630.

[31]

Kim, B.; Park, T.; Oh, S. J.; Seo, J. H. Ion-conducting, supramolecular crosslinked elastomer with a wide linear range of strain resistances. ACS Appl. Polym. Mater. 2021, 3, 5012–5021.

[32]

Liu, X. H.; Zhang, E. D.; Liu, J. M.; Qin, J. J.; Wu, M. Q.; Yang, C. L.; Liang, L. Y. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chem. Eng. J. 2023, 454, 139992.

[33]

Li, G.; Li, C. L.; Li, G. D.; Yu, D. H.; Song, Z. P.; Wang, H. L.; Liu, X. N.; Liu, H.; Liu, W. X. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518.

[34]

Wang, L. Y.; Wang, Y.; Yang, S.; Tao, X. M.; Zi, Y. L.; Daoud, W. A. Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy 2022, 91, 106611.

[35]

Zhang, P. P.; Guo, W. B.; Guo, Z. H.; Ma, Y.; Gao, L.; Cong, Z. F.; Zhao, X. J.; Qiao, L. J.; Pu, X.; Wang, Z. L. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv. Mater. 2021, 33, 2101396.

[36]

Acosta, M.; Baiutti, F.; Tarancón, A.; MacManus-Driscoll, J. L. Nanostructured materials and interfaces for advanced ionic electronic conducting oxides. Adv. Mater. Interfaces 2019, 6, 1900462.

[37]

Liu, L. J.; Han, Y. C.; Xing, Z. C.; Yong, H. D. Nonlinear deformation and instability of a dielectric elastomer tube actuator. Int. J. Non Linear Mech. 2022, 147, 104235.

[38]

Li, M. L.; Wu, Y. Z.; Zhang, L.; Wo, H. L.; Huang, S. Y.; Li, W.; Zeng, X. Y.; Ye, Q. K.; Xu, T. B.; Luo, J. K. et al. Liquid metal-based electrical interconnects and interfaces with excellent stability and reliability for flexible electronics. Nanoscale 2019, 11, 5441–5449.

[39]

Qi, D. P.; Zhang, K. Y.; Tian, G. W.; Jiang, B.; Huang, Y. D. Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33, 2003155.

[40]

Yang, H.; Wu, N. Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671.

[41]

Kujawska, A.; Knozowska, K.; Kujawa, J.; Li, G. Q.; Kujawski, W. Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep. Purif. Technol. 2020, 234, 116092.

[42]

Lin, M. F.; Xiong, J. Q.; Wang, J. X.; Parida, K.; Lee, P. S. Core–shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2018, 44, 248–255.

[43]

Horowitz, A. I.; Panzer, M. J. Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading. Angew. Chem., Int. Ed. 2014, 53, 9780–9783.

[44]

Wang, P.; Yang, L.; Dai, B.; Yang, Z. H.; Guo, S.; Gao, G.; Xu, L. G.; Sun, M. Q.; Yao, K. L.; Zhu, J. Q. A self-healing transparent polydimethylsiloxane elastomer based on imine bonds. Eur. Polym. J. 2020, 123, 109382.

[45]

Liu, Y.; Lee, J. Y.; Hong, L. Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. J. Power Sources 2002, 109, 507–514.

[46]

Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. A.; Deshmukh, R. R.; Pasha, S. K. K.; Polu, A. R.; Chidambaram, K. Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 2017, 134, 44427.

[47]

Yang, S.; Yang, Z. Y.; Yang, J.; Li, E. Z.; Tang, B.; Yuan, Y. Research on Ba2Ti9O20-filled polybutadiene composites with near-zero temperature coefficient of dielectric constant by SiO2 addition. J. Mater. Sci.: Mater. Electron. 2022, 33, 25463–25474.

[48]

Zhu, S. S.; Zhang, J. Enhanced dielectric constant of acrylonitrile-butadiene rubber/barium titanate composites with mechanical reinforcement by nanosilica. Iran. Polym. J. 2017, 26, 239–251.

[49]

Mao, Y. W.; Lin, S. T.; Zhao, X. H.; Anand, L. A large deformation viscoelastic model for double-network hydrogels. J. Mech. Phys. Solids 2017, 100, 103–130.

[50]

Xu, K.; Shen, K. X.; Yu, J.; Yang, Y. X.; Wei, Y. T.; Lin, P. L.; Zhang, Q.; Xiao, C. H.; Zhang, Y. F.; Cheng, Y. L. Ultradurable noncovalent cross-linked hydrogels with low hysteresis and robust elasticity for flexible electronics. Chem. Mater. 2022, 34, 3311–3322.

[51]

Shi, R.; Sun, T. L.; Luo, F.; Nakajima, T.; Kurokawa, T.; Bin, Y. Z.; Rubinstein, M.; Gong, J. P. Elastic-plastic transformation of polyelectrolyte complex hydrogels from chitosan and sodium hyaluronate. Macromolecules 2018, 51, 8887–8898.

[52]

Halat, D. M.; Snyder, R. L.; Sundararaman, S.; Choo, Y.; Gao, K. W.; Hoffman, Z. J.; Abel, B. A.; Grundy, L. S.; Galluzzo, M. D.; Gordon, M. P. et al. Modifying Li+ and anion diffusivities in polyacetal electrolytes: A pulsed-field-gradient NMR study of ion self-diffusion. Chem. Mater. 2021, 33, 4915–4926.

[53]

Li, G.; Zhang, J.; Huang, F.; Wu, S. Y.; Wang, C. H.; Peng, S. H. Transparent, stretchable, and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy 2021, 88, 106289.

[54]

Dong, L.; Wang, M. X.; Wu, J. J.; Zhu, C. H.; Shi, J.; Morikawa, H. Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting. Adv. Fiber Mater. 2022, 4, 1486–1499.

[55]

Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y. B.; Li, S. B.; Xu, Y.; Zhou, Y. N.; Zhou, B. P. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312.

[56]

Guan, F. Y.; Han, Z. L.; Jin, M. T.; Wu, Z. T.; Chen, Y.; Chen, S. Y.; Wang, H. P. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv. Fiber Mater. 2021, 3, 128–137.

[57]

Thouti, E.; Nagaraju, A.; Chandran, A.; Prakash, P. V. B. S. S.; Shivanarayanamurthy, P.; Lal, B.; Kumar, P.; Kothari, P.; Panwar, D. Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring. Sens. Actuators A Phys. 2020, 314, 112251.

[58]

Wang, H. Z.; Li, Z.; Liu, Z. Y.; Fu, J. K.; Shan, T. Y.; Yang, X. Y.; Lei, Q. Y.; Yang, Y. J.; Li, D. H. Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 2022, 10, 1594–1605.

[59]

Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. Solvent-free method prepared a sandwich-like nanofibrous membrane-reinforced polymer electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 21586–21595.

File
12274_2023_5612_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2022
Revised: 22 February 2023
Accepted: 23 February 2023
Published: 26 March 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors are thankful for the support from the National Natural Science Foundation of China (No. 52173274), the National Key Research and Development Project from Ministry of Science and Technology (No. 2021YFA1201603), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021101).

Return