Journal Home > Volume 16 , Issue 7

Although photodetection based on two-dimensional (2D) van der Waals (vdWs) P–N heterojunction has attracted extensive attention recently, their low responsivity (R) due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area. Here, a black phosphorus/rhodamine 6G/molybdenum disulfide (BP/R6G/MoS2) photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers. The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules. The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed. Among them, the R increased by 14.8–20.4 times, and the specific detectivity (D*) increased by 24.9–34.4 times. The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interlayer sensitized van der Waals heterojunction photodetector with enhanced performance

Show Author's information Huide Wang1,4Yonghong Zeng1FanXu Meng5Rui Cao1Yi Liu1Zhinan Guo2( )Tingting Wang6Haiguo Hu1,2Sidi Fan1Yatao Yang4S. Wageh7Omar A. Al-Hartomy7Abul Kalam8,9Yonghong Shao3Yu-Jia Zeng3( )Dianyuan Fan1Han Zhang1( )
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430200, China
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

Although photodetection based on two-dimensional (2D) van der Waals (vdWs) P–N heterojunction has attracted extensive attention recently, their low responsivity (R) due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area. Here, a black phosphorus/rhodamine 6G/molybdenum disulfide (BP/R6G/MoS2) photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers. The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules. The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed. Among them, the R increased by 14.8–20.4 times, and the specific detectivity (D*) increased by 24.9–34.4 times. The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.

Keywords: charge transfer, heterojunction, photodetector, responsivity, interlayer sensitization

References(46)

[1]

Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

[2]

Yin, C. J.; Gong, C. H.; Chu, J. W.; Wang, X. D.; Yan, C. Y.; Qian, S. F.; Wang, Y.; Rao, G. F.; Wang, H. B.; Liu, Y. Q. et al. Ultrabroadband photodetectors up to 10.6 µm based on 2D Fe3O4 nanosheets. Adv. Mater. 2020, 32, 2002237.

[3]

Sun, Y. X.; Niu, G.; Ren, W.; Meng, X. J.; Zhao, J. Y.; Luo, W. B.; Ye, Z. G.; Xie, Y. H. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano 2021, 15, 10982–11013.

[4]

Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quant. Electron. 2019, 68, 100228.

[5]

Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J. et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 2022, 32, 2111970.

[6]

Wang, F.; Liu, Z. Y.; Zhang, T.; Long, M. S.; Wang, X. X.; Xie, R. Z.; Ge, H. N.; Wang, H.; Hou, J.; Gu, Y. et al. Fully depleted self-aligned heterosandwiched van der Waals photodetectors. Adv. Mater. 2022, 34, 2203283.

[7]

Pirruccio, G.; Martín Moreno, L.; Lozano, G.; Gómez Rivas, J. Coherent and broadband enhanced optical absorption in graphene. ACS Nano 2013, 7, 4810–4817.

[8]

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.

[9]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[10]

Piper, J. R.; Fan, S. H. Broadband absorption enhancement in solar cells with an atomically thin active layer. ACS Photonics 2016, 3, 571–577.

[11]

Li, Q.; Lu, J.; Gupta, P.; Qiu, M. Engineering optical absorption in graphene and other 2D materials: Advances and applications. Adv. Opt. Mater. 2019, 7, 1900595.

[12]

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

[13]

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

[14]

Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8, 8285–8291.

[15]

Kwak, D. H.; Ramasamy, P.; Lee, Y. S.; Jeong, M. H.; Lee, J. S. High-performance hybrid InP QDs/black phosphorus photodetector. ACS Appl. Mater. Interfaces 2019, 11, 29041–29046.

[16]

Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028–9037.

[17]

Luo, Q. Q.; Feng, G. Y.; Song, Y. R.; Zhang, E. B.; Yuan, J. Y.; Fa, D. J.; Sun, Q. S.; Lei, S. B.; Hu, W. P. 2D-polyimide film sensitized monolayer MoS2 phototransistor enabled near-infrared photodetection. Nano Res. 2022, 15, 8428–8434.

[18]

Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458.

[19]

Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

[20]

Lan, H. Y.; Hsieh, Y. H.; Chiao, Z. Y.; Jariwala, D.; Shih, M. H.; Yen, T. J.; Hess, O.; Lu, Y. J. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett. 2021, 21, 3083–3091.

[21]

Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Schrenk, W.; Strasser, G. et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777.

[22]

Lu, Y. N.; Yang, G. F.; Wang, F. X.; Lu, N. Y. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure. Superlattices Microst. 2018, 117, 163–168.

[23]

Azar, N. S.; Bullock, J.; Balendhran, S.; Kim, H.; Javey, A.; Crozier, K. B. Light–matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics. ACS Photonics 2021, 8, 1120–1128.

[24]

Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 2012, 101, 111110.

[25]

Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.

[26]

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

[27]

Yin, Y. L.; Cao, R.; Guo, J. S.; Liu, C. Y.; Li, J.; Feng, X. L.; Wang, H. D.; Du, W.; Qadir, A.; Zhang, H. et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser Photonics Rev. 2019, 13, 1900032.

[28]

Tian, R. J.; Gan, X. T.; Li, C.; Chen, X. Q.; Hu, S. Q.; Gu, L. P.; Van Thourhout, D.; Castellanos-Gomez, A.; Sun, Z. P.; Zhao, J. L. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light Sci Appl. 2022, 11, 101.

[29]

Wu, J. H.; Lu, Y. H.; Feng, S. R.; Wu, Z. Q.; Lin, S. Y.; Hao, Z. Z.; Yao, T. Y.; Li, X. M.; Zhu, H. W.; Lin, S. S. The interaction between quantum dots and graphene: The applications in graphene-based solar cells and photodetectors. Adv. Funct. Mater. 2018, 28, 1804712.

[30]

Han, J. Y.; Wang, F. K.; Han, S.; Deng, W. J.; Du, X. Y.; Yu, H.; Gou, J.; Wang, Q. J.; Wang, J. Recent progress in 2D inorganic/organic charge transfer heterojunction photodetectors. Adv. Funct. Mater. 2022, 32, 2205150.

[31]

Kubin, R. F.; Fletcher, A. N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 1982, 27, 455–462.

[32]

Zeng, L. T.; Jiao, C. J.; Huang, X. B.; Huang, K. W.; Chin, W. S.; Wu, J. S. Anthracene-fused BODIPYs as near-infrared dyes with high photostability. Org. Lett. 2011, 13, 6026–6029.

[33]

Huang, Y. M.; Zheng, W.; Qiu, Y. F.; Hu, P. G. Effects of organic molecules with different structures and absorption bandwidth on modulating photoresponse of MoS2 photodetector. ACS Appl. Mater. Interfaces 2016, 8, 23362–23370.

[34]

Lee, Y.; Kim, H.; Kim, S.; Whang, D.; Cho, J. H. Photogating in the graphene–dye–graphene sandwich heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 23474–23481.

[35]

Wang, L. M.; Zou, X. M.; Lin, J.; Jiang, J. Y.; Liu, Y.; Liu, X. Q.; Zhao, X.; Liu, Y. F.; Ho, J. C.; Liao, L. Perovskite/black phosphorus/MoS2 photogate reversed photodiodes with ultrahigh light on/off ratio and fast response. ACS Nano 2019, 13, 4804–4813.

[36]

Zeng, P. Y.; Wang, W. H.; Han, D. S.; Zhang, J. D.; Yu, Z. H.; He, J. Y.; Zheng, P.; Zheng, H.; Zheng, L.; Su, W. T. et al. MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes. ACS Nano 2022, 16, 9329–9338.

[37]

Yang, S. J.; Pi, L. J.; Li, L.; Liu, K. L.; Pei, K.; Han, W.; Wang, F. K.; Zhuge, F. W.; Li, H. Q.; Cheng, G. et al. 2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor with high current gain. Adv. Mater. 2021, 33, 2106537.

[38]

Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558–7566.

[39]

Dastgeer, G.; Khan, M. F.; Nazir, G.; Afzal, A. M.; Aftab, S.; Naqvi, B. A.; Cha, J.; Min, K. A.; Jamil, Y.; Jung, J. et al. Temperature-dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces 2018, 10, 13150–13157.

[40]

Yan, X.; Zhang, D. W.; Liu, C. S.; Bao, W. Z.; Wang, S. Y.; Ding, S. J.; Zheng, G. F.; Zhou, P. High performance amplifier element realization via MoS2/GaTe heterostructures. Adv. Sci. 2018, 5, 1700830.

[41]

Wang, Y.; Wang, H. L.; Gali, S. M.; Turetta, N.; Yao, Y. F.; Wang, C.; Chen, Y. S.; Beljonne, D.; Samorì, P. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors. Adv. Funct. Mater. 2021, 31, 2103353.

[42]

Yang, P.; Zha, J. J.; Gao, G. Y.; Zheng, L.; Huang, H. X.; Xia, Y. P.; Xu, S. C.; Xiong, T. F.; Zhang, Z. M.; Yang, Z. B. et al. Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 2022, 14, 109.

[43]

Yu, Z. H.; Ong, Z. Y.; Li, S. L.; Xu, J. B.; Zhang, G.; Zhang, Y. W.; Shi, Y.; Wang, X. R. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 2017, 27, 1604093.

[44]

Sidhik, S.; Velusamy, J.; De La Rosa, E.; Pérez-García, S. A.; Ramos-Ortiz, G.; López-Luke, T. Role of carbon nanodots in defect passivation and photo-sensitization of mesoscopic-TiO2 for perovskite solar cells. Carbon 2019, 146, 388–398.

[45]

Wang, H. D.; Gao, S.; Zhang, F.; Meng, F. X.; Guo, Z. N.; Cao, R.; Zeng, Y. H.; Zhao, J. L.; Chen, S.; Hu, H. G. et al. Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector. Adv. Sci. 2021, 8, 2100503.

[46]

Wang, W. J.; Meng, Y.; Wang, W.; Zhang, Z. M.; Xie, P. S.; Lai, Z. X.; Bu, X. M.; Li, Y. Z.; Liu, C. T.; Yang, Z. B. et al. Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv. Funct. Mater. 2022, 32, 2203003.

File
12274_2023_5611_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2022
Revised: 22 February 2023
Accepted: 23 February 2023
Published: 19 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by National Key Research and Development Project (No. 2019YFB2203503), the National Natural Science Foundation of China (No. 62105211), China Postdoctoral Science Foundation (Nos. 2021M702242 and 2022T150431), Natural Science Foundation of Guangdong Province (Nos. 2018B030306038 and 2020A1515110373), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010649), Science and Technology Projects in Guangzhou (No. 202201000002), Science and Technology Innovation Commission of Shenzhen (Nos. JCYJ20180507182047316, 20200805132016001, and JCYJ20200109105608771), Natural Science Foundation of Jilin Province (No. YDZJ202201ZYTS429), and NTUT-SZU Joint Research Program (No. 2021008). Authors acknowledge support and funding of King Khalid University through Research Center for Advanced Materials Science (RCAMS) (No. RCAMS/KKU/0010/21). The authors also acknowledge the Photonics Center of Shenzhen University for technical support.

Return