Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications. Although the construction of supramolecular cages via a bottom-up self-assembly process has been well developed, the sophisticated synthesis still remains a challenge. Here we report the design and assembly of a giant double-rimed nanocube Zn24LH8, built with 8 tribenzotriquinacene as six-connected vertices and 24 <tpy-Zn2+-tpy> (tpy = terpyridine) connectivities serving as the edges. From the single-crystal structure of tribenzotriquinacene-based ligand LH, the bowl-shaped ligand defines a suitable rigid platform for the spatially well-defined attachment of three sets of parallel vertices, which promotes the quantitative formation of the desired three-dimensional (3D) double-rimed cubic architectures. The formed nanocube Zn24LH8 possesses molecular weight up to 25.6 kDa and side length 5.3 nm. Remarkably, the Zn24LH8 exhibits strong cyan light emission with high luminescence quantum yields in solution and in the solid state based on the inherent cage-confinement induced emission enhancement. By adding orange-emissive Rhodamine B, emission tuning experiments were achieved including white light emission. This work presents a new system for the imitation of complex assemblies and provides a promising candidate for emissive materials.
Hasell, T.; Cooper, A. I. Porous organic cages: Soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 16053.
Wang, H. L.; Jin, Y. H.; Sun, N. N.; Zhang, W.; Jiang, J. Z. Post-synthetic modification of porous organic cages. Chem. Soc. Rev. 2021, 50, 8874–8886.
Percástegui, E. G.; Ronson, T. K.; Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 2020, 120, 13480–13544.
McConnell, A. J. Metallosupramolecular cages: From design principles and characterisation techniques to applications. Chem. Soc. Rev. 2022, 51, 2957–2971.
Chen, L.; Chen, Q. H.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. Controllable coordination-driven self-assembly: From discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 2015, 48, 201–210.
Amouri, H.; Desmarets, C.; Moussa, J. Confined nanospaces in metallocages: Guest molecules, weakly encapsulated anions, and catalyst sequestration. Chem. Rev. 2012, 112, 2015–2041.
Virovets, A. V.; Peresypkina, E.; Scheer, M. Structural chemistry of giant metal based supramolecules. Chem. Rev. 2021, 121, 14485–14554.
Liang, Y.; Fang, Y.; Cui, Y.; Zhou, H. C. A stable biocompatible porous coordination cage promotes in vivo liver tumor inhibition. Nano Res. 2021, 14, 3407–3415.
Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y. et al. Porous organic cages. Nat. Mater. 2009, 8, 973–978.
Biros, S. M.; Rebek, J. Jr. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev. 2007, 36, 93–104.
Dev Mukhopadhyay, R.; Kim, Y.; Koo, J.; Kim, K. Porphyrin boxes. Acc. Chem. Res. 2018, 51, 2730–2738.
Mastalerz, M. Porous shape-persistent organic cage compounds of different size, geometry, and function. Acc. Chem. Res. 2018, 51, 2411–2422.
Ivanova, S.; Köster, E.; Holstein, J. J.; Keller, N.; Clever, G. H.; Bein, T.; Beuerle, F. Isoreticular crystallization of highly porous cubic covalent organic cage compounds. Angew. Chem., Int. Ed. 2021, 60, 17455–17463.
Xu, D.; Warmuth, R. Edge-directed dynamic covalent synthesis of a chiral nanocube. J. Am. Chem. Soc. 2008, 130, 7520–7521.
Klotzbach, S.; Scherpf, T.; Beuerle, F. Dynamic covalent assembly of tribenzotriquinacenes into molecular cubes. Chem. Commun. 2014, 50, 12454–12457.
Caulder, D. L.; Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 1999, 32, 975–982.
Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: Self-assembly of finite two-and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.
Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.
Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev. 2013, 42, 1728–1754.
Natarajan, R.; Savitha, G.; Moorthy, J. N. Self-assembly of a unique extended-tetrahedral 3,3',5,5'-tetrakis(4-pyridyl)bimesityl ligand into discrete supramolecular cubes by face-directed metal coordination. Cryst. Growth Des. 2005, 5, 69–72.
Gong, Y. R.; Qin, C.; Zhang, Y. T.; Sun, C. Y.; Pan, Q. H.; Wang, X. L.; Su, Z. M. Face-directed assembly of molecular cubes: In situ substitution of a predetermined concave cluster. Angew. Chem., Int. Ed. 2020, 59, 22034–22038.
Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acid catalysis in basic solution: A supramolecular host promotes orthoformate hydrolysis. Science 2007, 316, 85–88.
Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 2009, 324, 1697–1699.
Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 2016, 540, 563–566.
Ubasart, E.; Borodin, O.; Fuertes-Espinosa, C.; Xu, Y. Z.; García-Simón, C.; Gómez, L.; Juanhuix, J.; Gándara, F.; Imaz, I.; Maspoch, D. et al. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60. Nat. Chem. 2021, 13, 420–427.
Olenyuk, B.; Whiteford, J. A.; Fechtenkötter, A.; Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 1999, 398, 796–799.
Hiraoka, S.; Harano, K.; Shiro, M.; Shionoya, M. A self-assembled organic capsule formed from the union of six hexagram-shaped amphiphile molecules. J. Am. Chem. Soc. 2008, 130, 14368–14369.
Hou, Y. J.; Wu, K.; Wei, Z. W.; Li, K.; Lu, Y. L.; Zhu, C. Y.; Wang, J. S.; Pan, M.; Jiang, J. J.; Li, G. Q. et al. Design and enantioresolution of homochiral Fe(II)–Pd(II) coordination cages from stereolabile metalloligands: Stereochemical stability and enantioselective separation. J. Am. Chem. Soc. 2018, 140, 18183–18191.
Zhu, C. F.; Tang, H. T.; Yang, K. K.; Fang, Y.; Wang, K. Y.; Xiao, Z. F.; Wu, X.; Li, Y. G.; Powell, J. A.; Zhou, H. C. Homochiral dodecanuclear lanthanide “cage in cage” for enantioselective separation. J. Am. Chem. Soc. 2021, 143, 12560–12566.
Saha, R.; Mondal, B.; Mukherjee, P. S. Molecular cavity for catalysis and formation of metal nanoparticles for use in catalysis. Chem. Rev. 2022, 122, 12244–12307.
Pullen, S.; Clever, G. H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds—A comparison. Acc. Chem. Res. 2018, 51, 3052–3064.
Shi, W. J.; Li, X.; Li, P.; Han, Y. F. Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide. Nano Res. 2022, 15, 2655–2660.
Li, X. Z.; Zhou, L. P.; Yan, L. L.; Yuan, D. Q.; Lin, C. S.; Sun, Q. F. Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes. J. Am. Chem. Soc. 2017, 139, 8237–8244.
Mouarrawis, V.; Bobylev, E. O.; de Bruin, B.; Reek, J. N. H. A novel M8L6 cubic cage that binds tetrapyridyl porphyrins: Cage and solvent effects in cobalt-porphyrin-catalyzed cyclopropanation reactions. Chem.—Eur. J. 2021, 27, 8390–8397.
Hong, S. S.; Rohman, R.; Jia, J. T.; Kim, Y.; Moon, D.; Kim, Y.; Ko, Y. H.; Lee, E.; Kim, K. Porphyrin boxes: Rationally designed porous organic cages. Angew. Chem., Int. Ed. 2015, 54, 13241–13244.
Roche, S.; Haslam, C.; L. Heath, S. L.; Thomas, J. A. Self-assembly of a supramolecular cube. Chem. Commun. 1998, 1681–1682.
Meng, W. J.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.; Nitschke, J. R. A self-assembled M8L6 cubic cage that selectively encapsulates large aromatic guests. Angew. Chem., Int. Ed. 2011, 50, 3479–3483.
Tidmarsh, I. S.; Faust, T. B.; Adams, H.; Harding, L. P.; Russo, L.; Clegg, W.; Ward, M. D. Octanuclear cubic coordination cages. J. Am. Chem. Soc. 2008, 130, 15167–15175.
Domoto, Y.; Abe, M.; Fujita, M. A highly entangled (M3L2)8 truncated cube from the anion-controlled oligomerization of a π-coordinated M3L2 subunit. J. Am. Chem. Soc. 2021, 143, 8578–8582.
Chakraborty, S.; Newkome, G. R. Terpyridine-based metallosupramolecular constructs: Tailored monomers to precise 2D-motifs and 3D-metallocages. Chem. Soc. Rev. 2018, 47, 3991–4016.
Chen, Y. S.; Solel, E.; Huang, Y. F.; Wang, C. L.; Tu, T. H.; Keinan, E.; Chan, Y. T. Chemical mimicry of viral capsid self-assembly via corannulene-based pentatopic tectons. Nat. Commun. 2019, 10, 3443.
Wang, M.; Wang, C.; Hao, X. Q.; Li, X. H.; Vaughn, T. J.; Zhang, Y. Y.; Yu, Y. H.; Li, Z. Y.; Song, M. P.; Yang, H. B. et al. From trigonal bipyramidal to platonic solids: Self-assembly and self-sorting study of terpyridine-based 3D architectures. J. Am. Chem. Soc. 2014, 136, 10499–10507.
Yu, X. J.; Guo, C. X.; Lu, S.; Chen, Z.; Wang, H.; Li, X. P. Terpyridine-based 3D discrete metallosupramolecular architectures. Macromol. Rapid. Commun. 2022, 43, 2200004.
Chen, M. Z.; Wang, J.; Liu, D.; Jiang, Z. L.; Liu, Q. Q.; Wu, T.; Liu, H. S.; Yu, W. D.; Yan, J.; Wang, P. S. Highly stable spherical metallo-capsule from a branched hexapodal terpyridine and its self-assembled berry-type nanostructure. J. Am. Chem. Soc. 2018, 140, 2555–2561.
Chakraborty, S.; Endres, K. J.; Bera, R.; Wojtas, L.; Moorefield, C. N.; Saunders, M. J.; Das, N.; Wesdemiotis, C.; Newkome, G. R. Concentration dependent supramolecular interconversions of triptycene-based cubic, prismatic, and tetrahedral structures. Dalton Trans. 2018, 47, 14189–14194.
Wu, T.; Jiang, Z. Y.; Bai, Q. X.; Li, Y. M.; Mao, S. H.; Yu, H.; Wojtas, L.; Tang, Z. B.; Chen, M. Z.; Zhang, Z. et al. Supramolecular triangular orthobicupola: Self-assembly of a giant Johnson solid J27. Chem 2021, 7, 2429–2441.
Xie, T. Z.; Endres, K. J.; Guo, Z. H.; Ludlow III, J. M.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Controlled interconversion of superposed-bistriangle, octahedron, and cuboctahedron cages constructed using a single, terpyridinyl-based polyligand and Zn2+. J. Am. Chem. Soc. 2016, 138, 12344–12347.
Xie, T. Z.; Guo, K.; Guo, Z. H.; Gao, W. Y.; Wojtas, L.; Ning, G. H.; Huang, M. J.; Lu, X. C.; Li, J. Y.; Liao, S. Y. et al. Precise molecular fission and fusion: Quantitative self-assembly and chemistry of a metallo-cuboctahedron. Angew. Chem., Int. Ed. 2015, 54, 9224–9229.
Liu, D.; Li, K. X.; Chen, M. Z.; Zhang, T. T.; Li, Z. G.; Yin, J. F.; He, L. P.; Wang, J.; Yin, P. C.; Chan, Y. T. et al. Russian-doll-like molecular cubes. J. Am. Chem. Soc. 2021, 143, 2537–2544.
Wang, J.; Zhao, H.; Chen, M. Z.; Jiang, Z. Y.; Wang, F.; Wang, G. T.; Li, K. X.; Zhang, Z.; Liu, D.; Jiang, Z. L. et al. Construction of macromolecular pinwheels using predesigned metalloligands. J. Am. Chem. Soc. 2020, 142, 21691–21701.
He, L. P.; Hsu, H. K.; Li, L. J.; Lin, L. T.; Tu, T. H.; Ong, T. G.; Liou, G. G.; Chan, Y. T. A 10-nm-sized multicompartment cuboctahedron and its 2D hierarchical arrays observed by cryo-EM. Chem 2022, 8, 494–507.
Dhara, A.; Weinmann, J.; Krause, A. M.; Beuerle, F. Apical functionalization of tribenzotriquinacenes. Chem.—Eur. J. 2016, 22, 12473–12478.
Tao, R.; Zhao, X.; Zhao, T. S.; Zhao, M. M.; Li, R. Y.; Yang, T. F.; Tang, L. Z.; Jin, Y. H.; Zhang, W.; Qiu, L. Cage-confinement induced emission enhancement. J. Phys. Chem. Lett. 2022, 13, 6604–6611.
Brandenburg, J. G.; Grimme, S.; Jones, P. G.; Markopoulos, G.; Hopf, H.; Cyranski, M. K.; Kuck, D. Unidirectional molecular stacking of tribenzotriquinacenes in the solid state: A combined X-ray and theoretical study. Chem.—Eur. J. 2013, 19, 9930–9938.
Yan, X. Z.; Cook, T. R.; Wang, P.; Huang, F. H.; Stang, P. J. Highly emissive platinum(II) metallacages. Nat. Chem. 2015, 7, 342–348.
Zhao, J.; Zhou, Z. X.; Li G F, Stang, P. J.; Yan, X. Z. Light-emitting self-assembled metallacages. Natl. Sci. Rev. 2021, 8, nwab045.
Li, X. Z.; Tian, C. B.; Sun, Q. F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458.
Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476.