Journal Home > Volume 17 , Issue 2

The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Organic thin-film transistors and related devices in life and health monitoring

Show Author's information Chenfang Sun( )Tie Wang( )
Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China

Abstract

The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices.

Keywords: biomarkers, healthcare, biosensors, organic semiconductors, organic thin-film transistors, organic bioelectronics

References(116)

[1]

Luo, X. L.; Davis, J. J. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962.

[2]

Wang, C. L.; Dong, H. L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.

[3]

Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

[4]

Zhang, C. C.; Chen, P. L.; Hu, W. P. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107.

[5]

Li, H.; Shi, W.; Song, J.; Jang, H. J.; Dailey, J.; Yu, J. S.; Katz, H. E. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 2019, 119, 3–35.

[6]

Wang, Y. J.; Gong, Q.; Miao, Q. Structured and functionalized organic semiconductors for chemical and biological sensors based on organic field effect transistors. Mater. Chem. Front. 2020, 4, 3505–3520.

[7]

Wang, N. X.; Yang, A. N.; Fu, Y.; Li, Y. Z.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287.

[8]

Macchia, E.; De Caro, L.; Torricelli, F.; Franco, C. D.; Mangiatordi, G. F.; Scamarcio, G.; Torsi, L. Why a diffusing single-molecule can be detected in few minutes by a large capturing bioelectronic interface. Adv. Sci. 2022, 9, 2104381.

[9]

Macchia, E.; Tiwari, A.; Manoli, K.; Holzer, B.; Ditaranto, N.; Picca, R. A.; Cioffi, N.; Di Franco, C.; Scamarcio, G.; Palazzo, G. et al. Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins. Chem. Mater. 2019, 31, 6476–6483.

[10]

Tang, W.; Fu, Y.; Huang, Y. K.; Li, Y. Z.; Song, Y. W.; Xi, X.; Yu, Y. D.; Su, Y. Z.; Yan, F.; Guo, X. J. Solution processed low power organic field-effect transistor bio-chemical sensor of high transconductance efficiency. npj Flex. Electron. 2022, 6, 18.

[11]

Dai, C. H.; Liu, Y. Q.; Wei, D. C. Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 2022, 122, 10319–10392.

[12]

Jang, Y.; Jang, M.; Kim, H.; Lee, S. J.; Jin, E.; Koo, J. Y.; Hwang, I. C.; Kim, Y.; Ko, Y. H.; Hwang, I. et al. Point-of-use detection of amphetamine-type stimulants with host-molecule-functionalized organic transistors. Chem 2017, 3, 641–651.

[13]

Decataldo, F.; Barbalinardo, M.; Gentili, D.; Tessarolo, M.; Calienni, M.; Cavallini, M.; Fraboni, B. Organic electrochemical transistors for real-time monitoring of in vitro silver nanoparticle toxicity. Adv. Biosys. 2020, 4, 1900204.

[14]

Zhang, Y. P.; Kuang, J. H.; Dong, J. C.; Shi, L. X.; Li, Q. Y.; Zhang, B. J.; Shi, W.; Huang, X.; Zhu, Z. H.; Ma, Y. Q. et al. Ultra-sensitive boscalid sensors based on a β-cyclodextrin modified perfluorinated copper phthalocyanine field-effect transistor. J. Mater. Chem. C 2021, 9, 12877–12883.

[15]

Zhou, X. Y.; Xue, Z. J.; Wang, T. A point-of-care biosensor for rapid and ultra-sensitive detection of SARS-CoV-2. Matter 2022, 5, 2402–2404.

[16]

Wang, L. Q.; Wang, X. J.; Wu, Y. G.; Guo, M. Q.; Gu, C. J.; Dai, C. H.; Kong, D. R.; Wang, Y.; Zhang, C.; Qu, D. et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules, and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285.

[17]

Novodchuk, I.; Kayaharman, M.; Prassas, I.; Soosaipillai, A.; Karimi, R.; Goldthorpe, I. A.; Abdel-Rahman, E.; Sanderson, J.; Diamandis, E. P.; Bajcsy, M. et al. Electronic field effect detection of SARS-CoV-2 N-protein before the onset of symptoms. Biosens. Bioelectron. 2022, 210, 114331.

[18]

Gwyther, R. E. A.; Nekrasov, N. P.; Emelianov, A. V.; Nasibulin, A. G.; Ramakrishnan, K.; Bobrinetskiy, I.; Jones, D. D. Differential bio-optoelectronic gating of semiconducting carbon nanotubes by varying the covalent attachment residue of a green fluorescent protein. Adv. Funct. Mater. 2022, 32, 2112374.

[19]

Bonafè, F.; Decataldo, F.; Zironi, I.; Remondini, D.; Cramer, T.; Fraboni, B. AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat. Commun. 2022, 13, 5423.

[20]

Guo, X.; Cao, Q. Q.; Liu, Y. W.; He, T.; Liu, J. W.; Huang, S.; Tang, H.; Ma, M. Organic electrochemical transistor for in situ detection of H2O2 released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal. Chem. 2020, 92, 908–915.

[21]

Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49, 1210–1212.

[22]

Sun, C. F.; Wang, X.; Auwalu, M. A.; Cheng, S. S.; Hu, W. P. Organic thin film transistors-based biosensors. EcoMat 2021, 3, e12094.

[23]

Someya, T.; Dodabalapur, A.; Huang, J.; See, K. C.; Katz, H. E. Chemical and physical sensing by organic field-effect transistors and related devices. Adv. Mater. 2010, 22, 3799–3811.

[24]

Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.

[25]

Sun, C. F.; Wang, Y. X.; Sun, M. Y.; Zou, Y.; Zhang, C. C.; Cheng, S. S.; Hu, W. P. Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosens. Bioelectron. 2020, 164, 112251.

[26]

Liao, C. Z.; Zhang, M.; Yao, M. Y.; Hua, T.; Li, L.; Yan, F. Flexible organic electronics in biology: Materials and devices. Adv. Mater. 2015, 27, 7493–7527.

[27]

Huang, J.; Miragliotta, J.; Becknell, A.; Katz, H. E. Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. J. Am. Chem. Soc. 2007, 129, 9366–9376.

[28]

Liu, D. P.; Chu, Y. L.; Wu, X. H.; Huang, J. Side-chain effect of organic semiconductors in OFET-based chemical sensors. Sci. China Mater. 2017, 60, 977–984.

[29]

Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64.

[30]

Paterson, A. F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B. D.; Faber, H.; Emwas, A. H.; Chen, X. X.; Nikiforidis, G.; Hidalgo, T. C. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 2020, 11, 3004.

[31]

Iskierko, Z.; Noworyta, K.; Sharma, P. S. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens. Bioelectron. 2018, 109, 50–62.

[32]

Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571.

[33]

Zhou, Q.; Wang, M. Q.; Yagi, S.; Minami, T. Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection. Nanoscale 2021, 13, 100–107.

[34]

Dai, C. H.; Guo, M. Q.; Wu, Y. L.; Cao, B. P.; Wang, X. J.; Wu, Y. G.; Kang, H.; Kong, D. R.; Zhu, Z. Q.; Ying, T. L. et al. Ultraprecise antigen 10-in-1 pool testing by multiantibodies transistor assay. J. Am. Chem. Soc. 2021, 143, 19794–19801.

[35]

Di, C. A.; Liu, Y. Q.; Yu, G.; Zhu, D. B. Interface engineering: An effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573–1583.

[36]

Ji, D. Y.; Li, L. Q.; Fuchs, H.; Hu, W. P. Engineering the interfacial materials of organic field-effect transistors for efficient charge transport. Acc. Mater. Res. 2021, 2, 159–169.

[37]

Chen, H. L.; Zhang, W. N.; Li, M. L.; He, G.; Guo, X. F. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem. Rev. 2020, 120, 2879–2949.

[38]

Wang, S. Y.; Zhao, X. L.; Zhang, C.; Yang, Y. H.; Liang, J.; Ni, Y. P.; Zhang, M. X.; Li, J. T.; Ye, X. L.; Zhang, J. D. et al. Suppressing interface strain for eliminating double-slope behaviors: Towards ideal conformable polymer field-effect transistors. Adv. Mater. 2021, 33, 2101633.

[39]

Zhang, K.; Kotadiya, N. B.; Wang, X. Y.; Wetzelaer, G. J. A. H.; Marszalek, T.; Pisula, W.; Blom, P. W. M. Interlayers for improved hole injection in organic field-effect transistors. Adv. Electron. Mater. 2020, 6, 1901352.

[40]

Huang, J.; Du, J.; Cevher, Z.; Ren, Y. H.; Wu, X. H.; Chu, Y. L. Printable and flexible phototransistors based on blend of organic semiconductor and biopolymer. Adv. Funct. Mater. 2017, 27, 1604163.

[41]

Zhang, Y. P.; Liu, X. T.; Qiu, S.; Zhang, Q. Q.; Tang, W.; Liu, H. T.; Guo, Y. L.; Ma, Y. Q.; Guo, X. J.; Liu, Y. Q. A flexible acetylcholinesterase-modified graphene for chiral pesticide sensor. J. Am. Chem. Soc. 2019, 141, 14643–14649.

[42]

Duan, S. M.; Wang, T.; Geng, B. W.; Gao, X.; Li, C. G.; Zhang, J.; Xi, Y.; Zhang, X. T.; Ren, X. C.; Hu, W. P. Solution-processed centimeter-scale highly aligned organic crystalline arrays for high-performance organic field-effect transistors. Adv. Mater. 2020, 32, 1908388.

[43]

Ren, H.; Cui, N.; Tang, Q. X.; Tong, Y. H.; Zhao, X. L.; Liu, Y. C. High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small 2018, 14, 1801020.

[44]

Yang, Y. B.; Wang, J. F.; Huang, W. T.; Wan, G. J.; Xia, M. M.; Chen, D.; Zhang, Y.; Wang, Y. M.; Guo, F. D.; Tan, J. et al. Integrated urinalysis devices based on interface-engineered field-effect transistor biosensors incorporated with electronic circuits. Adv. Mater. 2022, 34, 2203224.

[45]

Anisimov, D. S.; Chekusova, V. P.; Trul, A. A.; Abramov, A. A.; Borshchev, O. V.; Agina, E. V.; Ponomarenko, S. A. Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Sci. Rep. 2021, 11, 10683.

[46]

Wang, T. T.; Ma, S. Q.; Lv, A. F.; Liu, F. J.; Yin, X. B. Concentration recognition of gas sensor with organic field-effect transistor assisted by artificial intelligence. Sens. Actuators B: Chem. 2022, 363, 131854.

[47]

Lu, J. J.; Liu, D. P.; Zhou, J. C.; Chu, Y. L.; Chen, Y. T.; Wu, X. H.; Huang, J. Porous organic field-effect transistors for enhanced chemical sensing performances. Adv. Funct. Mater. 2017, 27, 1700018.

[48]

Yuvaraja, S.; Surya, S. G.; Chernikova, V.; Vijjapu, M. T.; Shekhah, O.; Bhatt, P. M.; Chandra, S.; Eddaoudi, M.; Salama, K. N. Realization of an ultrasensitive and highly selective OFET NO2 sensor: The synergistic combination of PDVT-10 polymer and porphyrin-MOF. ACS Appl. Mater. Interfaces 2020, 12, 18748–18760.

[49]

Liu, L.; Xiong, W.; Cui, L. F.; Xue, Z. J.; Huang, C. H.; Song, Q.; Bai, W. Q.; Peng, Y. G.; Chen, X. Y.; Liu, K. Y. et al. Universal strategy for improving the sensitivity of detecting volatile organic compounds by patterned arrays. Angew. Chem., Int. Ed. 2020, 59, 15953–15957.

[50]

Seshadri, P.; Manoli, K.; Schneiderhan-Marra, N.; Anthes, U.; Wierzchowiec, P.; Bonrad, K.; Di Franco, C.; Torsi, L. Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosens. Bioelectron. 2018, 104, 113–119.

[51]

Buth, F.; Donner, A.; Sachsenhauser, M.; Stutzmann, M.; Garrido, J. A. Biofunctional electrolyte-gated organic field-effect transistors. Adv. Mater. 2012, 24, 4511–4517.

[52]

Minamiki, T.; Sasaki, Y.; Tokito, S.; Minami, T. Label-free direct electrical detection of a histidine-rich protein with sub-femtomolar sensitivity using an organic field-effect transistor. ChemistryOpen 2017, 6, 472–475.

[53]

Kim, D. J.; Lee, N. E.; Park, J. S.; Park, I. J.; Kim, J. G.; Cho, H. J. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens. Bioelectron. 2010, 25, 2477–2482.

[54]

Shen, H. G.; Zou, Y.; Zang, Y. P.; Huang, D. Z.; Jin, W. L.; Di, C. A.; Zhu, D. B. Molecular antenna tailored organic thin-film transistors for sensing application. Mater. Horiz. 2018, 5, 240–247.

[55]

Iqbal, H. F.; Ai, Q. X.; Thorley, K. J.; Chen, H.; McCulloch, I.; Risko, C.; Anthony, J. E.; Jurchescu, O. D. Suppressing bias stress degradation in high performance solution processed organic transistors operating in air. Nat. Commun. 2021, 12, 2352.

[56]

Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M. K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2017, 16, 356–362.

[57]

Simatos, D.; Spalek, L. J.; Kraft, U.; Nikolka, M.; Jiao, X.; McNeill, C. R.; Venkateshvaran, D.; Sirringhaus, H. The effect of the dielectric end groups on the positive bias stress stability of N2200 organic field effect transistors. APL Mater. 2021, 9, 041113.

[58]

Jia, X. J.; Fuentes-Hernandez, C.; Wang, C. Y.; Park, Y.; Kippelen, B. Stable organic thin-film transistors. Sci. Adv. 2018, 4, eaao1705.

[59]

Zhai, C. Y.; Yang, X. H.; Han, S. Y.; Lu, G. H.; Wei, P.; Chumakov, A.; Erbes, E.; Chen, Q.; Techert, S.; Roth, S. V. et al. Surface etching of polymeric semiconductor films improves environmental stability of transistors. Chem. Mater. 2021, 33, 2673–2682.

[60]

Sun, C. F.; Li, R.; Song, Y. R.; Jiang, X. Q.; Zhang, C. C.; Cheng, S. S.; Hu, W. P. Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis. Anal. Chem. 2021, 93, 6188–6194.

[61]

Sun, C. F.; Vinayak, M. V.; Cheng, S. S.; Hu, W. P. Facile functionalization strategy for ultrasensitive organic protein biochips in multi-biomarker determination. Anal. Chem. 2021, 93, 11305–11311.

[62]

Sun, C. F.; Feng, G. Y.; Song, Y. R.; Cheng, S. S.; Lei, S. B.; Hu, W. P. Single molecule level and label-free determination of multibiomarkers with an organic field-effect transistor platform in early cancer diagnosis. Anal. Chem. 2022, 94, 6615–6620.

[63]

Li, P. H.; Jia, C. C.; Guo, X. F. Molecule-based transistors: From macroscale to single molecule. Chem. Rec. 2021, 21, 1284–1299.

[64]

Macchia, E.; Manoli, K.; Holzer, B.; Di Franco, C.; Ghittorelli, M.; Torricelli, F.; Alberga, D.; Mangiatordi, G. F.; Palazzo, G.; Scamarcio, G. et al. Single-molecule detection with a millimetre-sized transistor. Nat. Commun. 2018, 9, 3223.

[65]

Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Single-molecule electrochemical transistors. Adv. Mater. 2021, 33, 2005883.

[66]

Guo, K. Y.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A. A.; Ahmad, A. N.; Alhamlan, F. S.; Shuaib, M. et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021, 5, 666–677.

[67]

Koklu, A.; Wustoni, S.; Guo, K. Y.; Silva, R.; Salvigni, L.; Hama, A.; Diaz-Galicia, E.; Moser, M.; Marks, A.; McCulloch, I. et al. Convection driven ultrarapid protein detection via nanobody-functionalized organic electrochemical transistors. Adv. Mater. 2022, 34, 2202972.

[68]

Liu, H.; Yang, A. N.; Song, J. J.; Wang, N. X.; Lam, P.; Li, Y.; Law, H. K. W.; Yan, F. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv. 2021, 7, eabg8387.

[69]

Zhang, T.; Deng, R. J.; Wang, Y. X.; Wu, C. Y.; Zhang, K. X.; Wang, C. Y.; Gong, N. Q.; Ledesma-Amaro, R.; Teng, X. C.; Yang, C. R. et al. A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution. Nat. Biomed. Eng. 2022, 6, 957–967.

[70]

Stoliar, P.; Bystrenova, E.; Quiroga, S. D.; Annibale, P.; Facchini, M.; Spijkman, M.; Setayesh, S.; de Leeuw, D.; Biscarini, F. DNA adsorption measured with ultra-thin film organic field effect transistors. Biosens. Bioelectron. 2009, 24, 2935–2938.

[71]

Kim, J. M.; Jha, S. K.; Chand, R.; Lee, D. H.; Kim, Y. S. DNA hybridization sensor based on pentacene thin film transistor. Biosens. Bioelectron. 2011, 26, 2264–2269.

[72]

Demelas, M.; Lai, S.; Casula, G.; Scavetta, E.; Barbaro, M.; Bonfiglio, A. An organic, charge-modulated field effect transistor for DNA detection. Sens. Actuators B: Chem 2012, 171–172, 198–203.

[73]

Sun, M. Y.; Zhang, C. C.; Wang, J.; Sun, C. F.; Ji, Y. C.; Cheng, S. S.; Liu, H. Construction of high stable all-graphene-based FETs as highly sensitive dual-signal miRNA sensors by a covalent layer-by-layer assembling method. Adv. Electron. Mater. 2020, 6, 2000731.

[74]

Macchia, E.; Manoli, K.; Di Franco, C.; Picca, R. A.; Österbacka, R.; Palazzo, G.; Torricelli, F.; Scamarcio, G.; Torsi, L. Organic field-effect transistor platform for label-free, single-molecule detection of genomic biomarkers. ACS Sens. 2020, 5, 1822–1830.

[75]

Gao, J. W.; Gao, Y. K.; Han, Y. K.; Pang, J. B.; Wang, C.; Wang, Y. H.; Liu, H.; Zhang, Y.; Han, L. Ultrasensitive label-free miRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098.

[76]

Sun, M. Y.; Zhang, C. C.; Chen, D.; Wang, J.; Ji, Y. C.; Liang, N.; Gao, H. Y.; Cheng, S. S.; Liu, H. Ultrasensitive and stable all graphene field-effect transistor-based Hg2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat 2021, 2, 213–225.

[77]

Ji, X. D.; Lau, H. Y.; Ren, X. C.; Peng, B. Y.; Zhai, P.; Feng, S. P.; Chan, P. K. L. Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N-vinyl-2-pyrrolidone)-capped platinum nanoparticles. Adv. Mater. Technol. 2016, 1, 1600042.

[78]

Shi, W.; Li, Q. Y.; Zhang, Y. P.; Liu, K.; Huang, X.; Yang, X. L.; Ran, Y.; Li, Y. F.; Guo, Y. L.; Liu, Y. Q. Enabling the aqueous solution sensing of skin-conformable organic field-effect transistor using an amphiphilic molecule. Appl. Mater. Today 2022, 26, 101275.

[79]

Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 2013, 1, 3820–3829.

[80]

Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 2018, 8, 15890.

[81]

Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 2015, 74, 45–48.

[82]

Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771.

[83]

Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J. Mater. Chem. B 2014, 2, 191–200.

[84]

Song, J. J.; Zheng, J. Z.; Yang, A. N.; Liu, H.; Zhao, Z. Y.; Wang, N. X.; Yan, F. Metal–organic framework transistors for dopamine sensing. Mater. Chem. Front. 2021, 5, 3422–3427.

[85]

Ferro, L. M. M.; Merces, L.; de Camargo, D. H. S.; Bof Bufon, C. C. Ultrahigh-gain organic electrochemical transistor chemosensors based on self-curled nanomembranes. Adv. Mater. 2021, 33, 2101518.

[86]

Wang, B.; Zhao, C. Z.; Wang, Z. Q.; Yang, K. A.; Cheng, X. B.; Liu, W. F.; Yu, W. Z.; Lin, S. Y.; Zhao, Y. C.; Cheung, K. M. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8, eabk0967.

[87]

Jeong, G.; Oh, J.; Jang, J. Fabrication of N-doped multidimensional carbon nanofibers for high-performance cortisol biosensors. Biosens. Bioelectron. 2019, 131, 30–36.

[88]

Woo, K.; Kang, W.; Lee, K.; Lee, P.; Kim, Y.; Yoon, T. S.; Cho, C. Y.; Park, K. H.; Ha, M. W.; Lee, H. H. Enhancement of cortisol measurement sensitivity by laser illumination for AlGaN/GaN transistor biosensor. Biosens. Bioelectron. 2020, 159, 112186.

[89]

Aerathupalathu Janardhanan, J.; Chen, Y. L.; Liu, C. T.; Tseng, H. S.; Wu, P. I.; She, J. W.; Hsiao, Y. S.; Yu, H. H. Sensitive detection of sweat cortisol using an organic electrochemical transistor featuring nanostructured poly(3,4-ethylenedioxythiophene) derivatives in the channel layer. Anal. Chem. 2022, 94, 7584–7593.

[90]

Tang, W. X.; Yin, L.; Sempionatto, J. R.; Moon, J. M.; Teymourian, H.; Wang, J. Touch-based stressless cortisol sensing. Adv. Mater. 2021, 33, 2008465.

[91]

Zang, Y. P.; Zhang, F. J.; Huang, D. Z.; Di, C. A.; Meng, Q.; Gao, X. K.; Zhu, D. B. Specific and reproducible gas sensors utilizing gas-phase chemical reaction on organic transistors. Adv. Mater. 2014, 26, 2862–2867.

[92]

Song, R. X.; Zhou, X.; Wang, Z.; Zhu, L. N.; Lu, J.; Xue, D.; Wang, Z. F.; Huang, L. Z.; Chi, L. F. High selective gas sensors based on surface modified polymer transistor. Org. Electron. 2021, 91, 106083.

[93]

Deng, Y. P.; Qi, H.; Ma, Y.; Liu, S. B.; Zhao, M. Y.; Guo, Z. H.; Jie, Y. S.; Zheng, R.; Jing, J. Z.; Chen, K. T. et al. A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc. Natl. Acad. Sci. USA 2022, 119, e2208060119.

[94]

Li, H. Y.; Shi, Y. J.; Han, G. C.; Liu, J.; Zhang, J.; Li, C. L.; Liu, J.; Yi, Y. P.; Li, T.; Gao, X. K. et al. Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor. Angew. Chem., Int. Ed. 2020, 59, 4380–4384.

[95]

Yang, Y.; Zhang, G. X.; Luo, H. W.; Yao, J. J.; Liu, Z. T.; Zhang, D. Q. Highly sensitive thin-film field-effect transistor sensor for ammonia with the DPP-bithiophene conjugated polymer entailing thermally cleavable tert-butoxy groups in the side chains. ACS Appl. Mater. Interfaces 2016, 8, 3635–3643.

[96]

Yang, Y. Z.; Liu, Z. T.; Chen, L. L.; Yao, J. J.; Lin, G. B.; Zhang, X. S.; Zhang, G. X.; Zhang, D. Q. Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective field-effect transistor sensors toward CO and H2S. Chem. Mater. 2019, 31, 1800–1807.

[97]

Huang, W. G.; Diallo, A. K.; Dailey, J. L.; Besar, K.; Katz, H. E. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J. Mater. Chem. C 2015, 3, 6445–6470.

[98]

Chua, J. H.; Chee, R. E.; Agarwal, A.; Wong, S. M.; Zhang, G. J. Label-free electrical detection of cardiac biomarker with complementary metal–oxide semiconductor-compatible silicon nanowire sensor arrays. Anal. Chem. 2009, 81, 6266–6271.

[99]

Palazzo, G.; De Tullio, D.; Magliulo, M.; Mallardi, A.; Intranuovo, F.; Mulla, M. Y.; Favia, P.; Vikholm-Lundin, I.; Torsi, L. Detection beyond Debye’s length with an electrolyte-gated organic field-effect transistor. Adv. Mater. 2015, 27, 911–916.

[100]

Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448.

[101]

Song, J.; Dailey, J.; Li, H.; Jang, H. J.; Zhang, P. F.; Wang, J. T. H.; Everett, A. D.; Katz, H. E. Extended solution gate OFET-based biosensor for label-free glial fibrillary acidic protein detection with polyethylene glycol-containing bioreceptor layer. Adv. Funct. Mater. 2017, 27, 1606506.

[102]

Yu, S. H.; Girma, H. G.; Sim, K. M.; Yoon, S.; Park, J. M.; Kong, H.; Chung, D. S. Polymer-based flexible NOx sensors with ppb-level detection at room temperature using breath-figure molding. Nanoscale 2019, 11, 17709–17717.

[103]

Qiao, X. Z.; Chen, X. Y.; Huang, C. H.; Li, A. L.; Li, X.; Lu, Z. L.; Wang, T. Detection of exhaled volatile organic compounds improved by hollow nanocages of layered double hydroxide on Ag nanowires. Angew. Chem., Int. Ed. 2019, 58, 16523–16527.

[104]

Huang, X. B.; Zhao, W. D.; Chen, X. Y.; Li, J. M.; Ye, H. C.; Li, C. C.; Yin, X. M.; Zhou, X. Y.; Qiao, X. Z.; Xue, Z. J. et al. Gold nanoparticle-bridge array to improve DNA hybridization efficiency of SERS sensors. J. Am. Chem. Soc. 2022, 144, 17533–17539.

[105]

Zhao, W. D.; Li, J. M.; Xue, Z. J.; Qiao, X. Z.; Li, A. L.; Chen, X. Y.; Feng, Y.; Yang, Z.; Wang, T. A separation-sensing platform performing accurate diagnosis of jaundice in complex biological tear fluids. Angew. Chem., Int. Ed. 2022, 61, e202205628.

[106]

Choi, C.; Leem, J.; Kim, M.; Taqieddin, A.; Cho, C.; Cho, K. W.; Lee, G. J.; Seung, H.; Bae, H. J.; Song, Y. M. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934.

[107]

Han, J. K.; Kang, M. G.; Jeong, J.; Cho, I.; Yu, J. M.; Yoon, K. J.; Park, I.; Choi, Y. K. Artificial olfactory neuron for an in-sensor neuromorphic nose. Adv. Sci. 2022, 9, 2106017.

[108]

Han, J. K.; Park, S. C.; Yu, J. M.; Ahn, J. H.; Choi, Y. K. A bioinspired artificial gustatory neuron for a neuromorphic based electronic tongue. Nano Lett. 2022, 22, 5244–5251.

[109]

Li, J. W.; Li, N.; Wang, Q. Q.; Wei, Z.; He, C. L.; Shang, D. S.; Guo, Y. T.; Zhang, W. Y.; Tang, J.; Liu, J. Y. et al. Highly stretchable MoS2-based transistors with opto-synaptic functionalities. Adv. Electron. Mater. 2022, 8, 2200238.

[110]

Mo, W. A.; Ding, G. L.; Nie, Z. H.; Feng, Z. H.; Zhou, K.; Chen, R. S.; Xie, P.; Shang, G.; Han, S. T.; Zhou, Y. Spatiotemporal modulation of plasticity in multi-terminal tactile synaptic transistor. Adv. Electron. Mater. 2022, 9, 2200733.

[111]

Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

[112]

Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

[113]

Wang, D. Z.; Lu, L. K.; Zhao, Z. Y.; Zhao, K. P.; Zhao, X. Y.; Pu, C. C.; Li, Y. K.; Xu, P. F.; Chen, X. J.; Guo, Y. L. et al. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs. Nat. Commun. 2022, 13, 6214.

[114]

Li, W. Y.; Song, Z. Q.; Kong, H. J.; Chen, M. Q.; Liu, S. J.; Bao, Y.; Ma, Y. M.; Sun, Z. H.; Liu, Z. B.; Wang, W. et al. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022, 104, 107935.

[115]
Xiang, Z. H.; Han, M. D.; Zhang, H. X. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res., in press, https://doi.org/10.1007/s12274-022-4551-8.
[116]

Zan, P.; Than, A.; Zhang, W. Q.; Cai, H. X.; Zhao, W. T.; Chen, P. Transdermal photothermal-pharmacotherapy to remodel adipose tissue for obesity and metabolic disorders. ACS Nano 2022, 16, 1813–1825.

File
12274_2023_5606_MOESM1_ESM.pdf (412.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2022
Revised: 21 February 2023
Accepted: 22 February 2023
Published: 14 April 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21925405, 22104141, 22104142, 22004122, and 201874005), the National Key Research and Development Program of China Grant (Nos. 2018YFA0208800 and 2021YFD1700300), the Chinese Academy of Sciences (Nos. XDA23030106 and YJKYYQ20180044), and the China Postdoctoral Science Foundation (Nos. 2020M680676 and 2021T140680).

Return