Journal Home > Volume 16 , Issue 7

Zigzag graphene nanoribbons (ZGNRs) with spin-polarized edge states have potential applications in carbon-based spintronics. The electronic structure of ZGNRs can be effectively tuned by different widths or dopants, which requires delicately designed monomers. Here, we report the successful synthesis of ZGNR with a width of eight carbon zigzag lines and nitrogen-boron-nitrogen (NBN) motifs decorated along the zigzag edges (NBN-8-ZGNR) on Au (111) surface, which starts from a specially designed U-shaped monomer with preinstalled NBN units at the zigzag edge. Chemical-bond-resolved non-contact atomic force microscopy (nc-AFM) imaging confirms the zigzag-terminated edges and the existence of NBN dopants. The electronic states distributed along the zigzag edges have been revealed after a silicon-layer intercalation at the interface of NBN-8-ZGNR and Au (111). Our work enriches the ZGNR family with a new dopant and larger width, which provides more candidates for future carbon-based nanoelectronic and spintronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons

Show Author's information Xiao Chang1,2,§Li Huang1,2,§Yixuan Gao1,2,§Yubin Fu3,4,§Ji Ma3,4Huan Yang1,2Junzhi Liu5Xiaoshuai Fu1,2Xiao Lin1,2( )Xinliang Feng3,4( )Shixuan Du1,2,6( )Hong-Jun Gao1,2,6( )
University of Chinese Academy of Sciences, Beijing 100190, China
Beijing National Center for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center for Advancing Electronics Dresden (CfAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden D-01069, Germany
Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
Songshan Lake Materials Laboratory, Dongguan 523808, China

§ Xiao Chang, Li Huang, Yixuan Gao, and Yubin Fu contributed equally to this work.

Abstract

Zigzag graphene nanoribbons (ZGNRs) with spin-polarized edge states have potential applications in carbon-based spintronics. The electronic structure of ZGNRs can be effectively tuned by different widths or dopants, which requires delicately designed monomers. Here, we report the successful synthesis of ZGNR with a width of eight carbon zigzag lines and nitrogen-boron-nitrogen (NBN) motifs decorated along the zigzag edges (NBN-8-ZGNR) on Au (111) surface, which starts from a specially designed U-shaped monomer with preinstalled NBN units at the zigzag edge. Chemical-bond-resolved non-contact atomic force microscopy (nc-AFM) imaging confirms the zigzag-terminated edges and the existence of NBN dopants. The electronic states distributed along the zigzag edges have been revealed after a silicon-layer intercalation at the interface of NBN-8-ZGNR and Au (111). Our work enriches the ZGNR family with a new dopant and larger width, which provides more candidates for future carbon-based nanoelectronic and spintronic applications.

Keywords: scanning tunneling microscopy (STM), density functional theory (DFT) calculations, edge states, non-contact atomic force microscopy (nc-AFM), zigzag graphene nanoribbons, nitrogen-boron-nitrogen (NBN) dopant

References(39)

[1]

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

[2]

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

[3]

Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom–up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

[4]

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

[5]

Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380–1388.

[6]

Gröning, O.; Wang, S. Y.; Yao, X. L.; Pignedoli, C. A.; Barin, G. B.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X. L.; Narita, A. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209–213.

[7]

Rizzo, D. J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F. Z.; Rodriguez, H.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Topological band engineering of graphene nanoribbons. Nature 2018, 560, 204–208.

[8]

Rizzo, D. J.; Veber, G.; Jiang, J. W.; McCurdy, R.; Cao, T.; Bronner, C.; Chen, T.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 2020, 369, 1597–1603.

[9]

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom–up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

[10]

Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Müllen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.

[11]

Senkovskiy, B. V.; Usachov, D. Y.; Fedorov, A. V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N. et al. Boron-doped graphene nanoribbons: Electronic structure and Raman fingerprint. ACS Nano 2018, 12, 7571–7582.

[12]

Sun, K. W.; Silveira, O. J.; Saito, S.; Sagisaka, K.; Yamaguchi, S.; Foster, A. S.; Kawai, S. Manipulation of spin polarization in boron-substituted graphene nanoribbons. ACS Nano 2022, 16, 11244–11250.

[13]

Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872–8875.

[14]

Blackwell, R. E.; Zhao, F. Z.; Brooks, E.; Zhu, J. M.; Piskun, I.; Wang, S. K.; Delgado, A.; Lee, Y. L.; Louie, S. G.; Fischer, F. R. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600, 647–652.

[15]

Cao, Y.; Qi, J.; Zhang, Y. F.; Huang, L.; Zheng, Q.; Lin, X.; Cheng, Z. H.; Zhang, Y. Y.; Feng, X. L.; Du, S. X. et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 2018, 11, 6190–6196.

[16]

Liu, X. M.; Li, G.; Lipatov, A.; Sun, T.; Mehdi Pour, M.; Aluru, N. R.; Lyding, J. W.; Sinitskii, A. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy, and electrical characterization. Nano Res. 2020, 13, 1713–1722.

[17]

Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

[18]

Pawlak, R.; Liu, X. S.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C. J. et al. Bottom–up synthesis of nitrogen-doped porous graphene nanoribbons. J. Am. Chem. Soc. 2020, 142, 12568–12573.

[19]

Wen, E. C. H.; Jacobse, P. H.; Jiang, J. W.; Wang, Z. Y.; McCurdy, R. D.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 2022, 144, 13696–13703.

[20]

Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

[21]

Yang, H.; Gao, Y. X.; Niu, W. H.; Chang, X.; Huang, L.; Liu, J. Z.; Mai, Y.; Feng, X. L.; Du, S. X.; Gao, H. J. Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au (111). Chin. Phys. B 2021, 30, 077306.

[22]

Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom–up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

[23]

Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; De Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom–up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

[24]

Senkovskiy, B. V.; Nenashev, A. V.; Alavi, S. K.; Falke, Y.; Hell, M.; Bampoulis, P.; Rybkovskiy, D. V.; Usachov, D. Y.; Fedorov, A. V.; Chernov, A. I. et al. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions. Nat. Commun. 2021, 12, 2542.

[25]

Rizzo, D. J.; Wu, M.; Tsai, H. Z.; Marangoni, T.; Durr, R. A.; Omrani, A. A.; Liou, F.; Bronner, C.; Joshi, T.; Nguyen, G. D. et al. Length-dependent evolution of type II heterojunctions in bottom–up-synthesized graphene nanoribbons. Nano Lett. 2019, 19, 3221–3228.

[26]

Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077–1082.

[27]

Li, J. C.; Sanz, S.; Merino-Díez, N.; Vilas-Varela, M.; Garcia-Lekue, A.; Corso, M.; De Oteyza, D. G.; Frederiksen, T.; Peña, D.; Pascual, J. I. Topological phase transition in chiral graphene nanoribbons: From edge bands to end states. Nat. Commun. 2021, 12, 5538.

[28]

Guo, G. P.; Lin, Z. R.; Tu, T.; Cao, G.; Li, X. P.; Guo, G. C. Quantum computation with graphene nanoribbon. New J. Phys. 2009, 11, 123005.

[29]

Luis, F.; Coronado, E. Spinning on the edge of graphene. Nature 2018, 557, 645–647.

[30]

Mandal, B.; Sarkar, S.; Pramanik, A.; Sarkar, P. Doped defective graphene nanoribbons: A new class of materials with novel spin filtering properties. RSC Adv. 2014, 4, 49946–49952.

[31]

Berdonces-Layunta, A.; Lawrence, J.; Edalatmanesh, S.; Castro-Esteban, J.; Wang, T.; Mohammed, M. S. G.; Colazzo, L.; Peña, D.; Jelínek, P.; De Oteyza, D. G. Chemical stability of (3,1)-chiral graphene nanoribbons. ACS Nano 2021, 15, 5610–5617.

[32]

Lawrence, J.; Berdonces-Layunta, A.; Edalatmanesh, S.; Castro-Esteban, J.; Wang, T.; Jimenez-Martin, A.; De La Torre, B.; Castrillo-Bodero, R.; Angulo-Portugal, P.; Mohammed, M. S. G. et al. Circumventing the stability problems of graphene nanoribbon zigzag edges. Nat. Chem. 2022, 14, 1451–1458.

[33]

Fu, Y. B.; Yang, H.; Gao, Y. X.; Huang, L.; Berger, R.; Liu, J. Z.; Lu, H. L.; Cheng, Z. H.; Du, S. X.; Gao, H. J. et al. On-surface synthesis of NBN-doped zigzag-edged graphene nanoribbons. Angew. Chem., Int. Ed. 2020, 132, 8958–8964.

[34]

Fu, Y. B.; Chang, X.; Yang, H.; Dmitrieva, E.; Gao, Y. X.; Ma, J.; Huang, L.; Liu, J. Z.; Lu, H. L.; Cheng, Z. H. et al. NBN-doped bis-tetracene and peri-tetracene: Synthesis and characterization. Angew. Chem., Int. Ed. 2021, 60, 26115–26121.

[35]

Wang, X. Y.; Zhang, F.; Schellhammer, K. S.; Machata, P.; Ortmann, F.; Cuniberti, G.; Fu, Y. B.; Hunger, J.; Tang, R. Z.; Popov, A. A. et al. Synthesis of NBN-type zigzag-edged polycyclic aromatic hydrocarbons: 1,9-Diaza-9a-boraphenalene as a structural motif. J. Am. Chem. Soc. 2016, 138, 11606–11615.

[36]

Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru (0001). Appl. Phys. Lett. 2012, 100, 093101.

[37]

Li, G.; Zhou, H. T.; Pan, L. D.; Zhang, Y.; Huang, L.; Xu, W. Y.; Du, S. X.; Ouyang, M.; Ferrari, A. C.; Gao, H. J. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 2015, 137, 7099–7103.

[38]

Guo, H.; Wang, X. Y.; Huang, L.; Jin, X.; Yang, Z. Z.; Zhou, Z.; Hu, H.; Zhang, Y. Y.; Lu, H. L.; Zhang, Q. H. et al. Insulating SiO2 under centimeter-scale, single-crystal graphene enables electronic-device fabrication. Nano Lett. 2020, 20, 8584–8591.

[39]

Deniz, O.; Sánchez-Sánchez, C.; Dumslaff, T.; Feng, X. L.; Narita, A.; Müllen, K.; Kharche, N.; Meunier, V.; Fasel, R.; Ruffieux, P. Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Lett. 2017, 17, 2197–2203.

File
12274_2023_5605_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 December 2022
Revised: 13 February 2023
Accepted: 22 February 2023
Published: 26 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The work was supported by grants from the National Key Research and Development Program of China (No. 2019YFA0308500), the National Natural Science Foundation of China (No. 61888102), the Chinese Academy of Sciences (Nos. XDB30000000 and YSBR-003), the EU Graphene Flagship (Graphene Core 3, No. 881603), the H2020-MSCA-ITN (ULTIMATE, No. 813036), the Center for Advancing Electronics Dresden (CfAED), the H2020-EU.1.2.2.-FET Proactive Grant (LIGHT-CAP, No. 101017821), and the DFG-SNSF Joint Switzerland-German Research Project (EnhanTopo, No. 429265950).

Return