Journal Home > Volume 16 , Issue 10

Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible (VIS) and near-infrared (NIR) light transmittance. As is known, the NIR region accounts for about 50% of the total solar radiation. Therefore, reducing the NIR transmittance of windows will play a crucial role in reducing the energy consumption of buildings. However, for most of the reported electrochromic materials (ECMs)-based windows, it remains a long-lasting challenge about how to achieve a low NIR transmittance during the past decades. In this work, we synthesize oxygen-deficient tungsten oxide (WO3−x) nanoflowers (NFs) by a simple and efficient method that is facile for their mass production. The WO3−x NFs exhibit low NIR transmittance of only 4.11%, 0.60%, and 0.19% at 1200, 1600, and 1800 nm, respectively, due to the localized surface plasmon resonance (LSPR) effect. Besides, the WO3−x NFs exhibit an excellent dual-band modulating ability for both VIS and NIR light. They are able to operate in three distinct modes, including a bright mode, a cool mode, and a dark mode. Moreover, the WO3−x NFs exhibit a fast bleaching/coloring time (1.54/6.67 s), and excellent cycling stability (97.75% of capacity retention after 4000 s).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows

Show Author's information Ya Huang,§Baoshun Wang,§Pei LyuSiming ZhaoXueke WuShiliang ZhangRun LiQinyuan JiangFei WangYanlong ZhaoRufan Zhang( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

§ Ya Huang and Baoshun Wang contributed equally to this work.

Abstract

Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible (VIS) and near-infrared (NIR) light transmittance. As is known, the NIR region accounts for about 50% of the total solar radiation. Therefore, reducing the NIR transmittance of windows will play a crucial role in reducing the energy consumption of buildings. However, for most of the reported electrochromic materials (ECMs)-based windows, it remains a long-lasting challenge about how to achieve a low NIR transmittance during the past decades. In this work, we synthesize oxygen-deficient tungsten oxide (WO3−x) nanoflowers (NFs) by a simple and efficient method that is facile for their mass production. The WO3−x NFs exhibit low NIR transmittance of only 4.11%, 0.60%, and 0.19% at 1200, 1600, and 1800 nm, respectively, due to the localized surface plasmon resonance (LSPR) effect. Besides, the WO3−x NFs exhibit an excellent dual-band modulating ability for both VIS and NIR light. They are able to operate in three distinct modes, including a bright mode, a cool mode, and a dark mode. Moreover, the WO3−x NFs exhibit a fast bleaching/coloring time (1.54/6.67 s), and excellent cycling stability (97.75% of capacity retention after 4000 s).

Keywords: infrared, tungsten oxide, electrochromic, dual-band, smart window

References(48)

[1]

Li, M.; Wu, Z. Z.; Zheng, M. T.; Chen, H.; Gould, T.; Zhang, S. Q. First-principles exploration of 2D benzenehexathiolate coordination nanosheets for broadband electrochromic devices. Adv. Funct. Mater. 2022, 32, 2202763.

[2]

Wang, K.; Meng, Q. C.; Wang, Q. K.; Zhang, W.; Guo, J. Q.; Cao, S.; Elezzabi, A. Y.; Yu, W. W.; Liu, L. H.; Li, H. Z. Advances in energy-efficient plasmonic electrochromic smart windows based on metal oxide nanocrystals. Adv. Energy Sustain. Res. 2021, 2, 2100117.

[3]

Xu, G. P.; Wang, B.; Song, S. S.; Ren, Z. C.; Liu, D. Q.; Zhang, L. P.; Li, Y. Dual-dynamic modulation of thermal radiation and electromagnetic interference shielding with the self-healing electrochromic device. Adv. Mater. Technol. 2022, 7, 2101381.

[4]

Gong, H.; Li, W. Z.; Fu, G. X.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Recent progress and advances in electrochromic devices exhibiting infrared modulation. J. Mater. Chem. A 2022, 10, 6269–6290.

[5]

Huang, Y.; Wang, B. S.; Chen, F. X.; Han, Y.; Zhang, W. S.; Wu, X. K.; Li, R.; Jiang, Q. Y.; Jia, X. L.; Zhang, R. F. Electrochromic materials based on ions insertion and extraction. Adv. Opt. Mater. 2022, 10, 2101783.

[6]

Yu, F.; Liu, W. B.; Ke, S. W.; Kurmoo, M.; Zuo, J. L.; Zhang, Q. C. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 2020, 11, 5534.

[7]

Huang, Y.; Wang, B. S.; Bai, X. J.; Han, Y.; Zhang, W. S.; Zhou, C. H.; Meng, H. B.; Chen, F. X.; Wu, X. K.; Jiang, Q. Y. et al. 3D pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability. Adv. Opt. Mater. 2022, 10, 2102399.

[8]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. A visible light-near-infrared dual-band smart window with internal energy storage. Joule 2019, 3, 1152–1162.

[9]

Cai, G. F.; Eh, A. L. S.; Ji, L.; Lee, P. S. Recent advances in electrochromic smart fenestration. Adv. Sustainable Sys. 2017, 1, 1700074.

[10]

Li, H. Z.; Zhang, W.; Elezzabi, A. Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 2020, 32, 2003574.

[11]

Wang, C. J.; Zhang, X. L.; Liu, S.; Zhang, H. L.; Wang, Q.; Zhang, C. L.; Gao, J. H.; Liang, L. Y.; Cao, H. T. Interfacial charge transfer and zinc ion intercalation and deintercalation dynamics in flexible multicolor electrochromic energy storage devices. ACS Appl. Energy Mater. 2022, 5, 88–97.

[12]

Guo, J. J.; Guo, X.; Sun, H. B.; Xie, Y. Z.; Diao, X. G.; Wang, M.; Zeng, X. P.; Zhang, Z. B. Unprecedented electrochromic stability of a-WO3−x thin films achieved by using a hybrid-cationic electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 11067–11077.

[13]

Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 2019, 141, 19831–19838.

[14]

Yang, G. J.; Zhang, Y. M.; Cai, Y. R.; Yang, B. G.; Gu, C.; Zhang, S. X. A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720.

[15]

Bessinger, D.; Muggli, K.; Beetz, M.; Auras, F.; Bein, T. Fast-switching Vis-IR electrochromic covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 7351–7357.

[16]

Zhang, S. L.; Li, Y.; Zhang, T. R.; Cao, S.; Yao, Q. F.; Lin, H. B.; Ye, H. L.; Fisher, A.; Lee, J. Y. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode. ACS Appl. Mater. Inter. 2019, 11, 48062–48070.

[17]

Cai, G. F.; Wang, J. X.; Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476.

[18]

Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.

[19]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Lee, J. Y. Plasmonic oxygen-deficient TiO2−x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 2020, 32, 2004686.

[20]

García-Tecedor, M.; Gorni, G.; Oropeza, F.; Gómez, L.; Liras, M.; De La Peña O'Shea, V. A.; Barawi, M. Unravelling nanostructured Nb-doped TiO2 dual band behaviour in smart windows by in situ spectroscopies. J. Mater. Chem. A 2022, 10, 19994–20004.

[21]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Lee, J. Y. Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 2018, 30, 4838–4846.

[22]

Wang, Z.; Zhang, Q. Z.; Cong, S.; Chen, Z. G.; Zhao, J. X.; Yang, M.; Zheng, Z. H.; Zeng, S.; Yang, X. W.; Geng, F. X. et al. Using intrinsic intracrystalline tunnels for near-infrared and visible-light selective electrochromic modulation. Adv. Opt. Mater. 2017, 5, 1700194.

[23]

Kim, J.; Ong, G. K.; Wang, Y.; LeBlanc, G.; Williams, T. E.; Mattox, T. M.; Helms, B. A.; Milliron, D. J. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 2015, 15, 5574–5579.

[24]

Gu, H. X.; Guo, C. S.; Zhang, S. H.; Bi, L. H.; Li, T. C.; Sun, T. D.; Liu, S. Q. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559–567.

[25]

Giannuzzi, R.; Scarfiello, R.; Sibillano, T.; Nobile, C.; Grillo, V.; Giannini, C.; Cozzoli, P. D.; Manca, M. From capacitance-controlled to diffusion-controlled electrochromism in one-dimensional shape-tailored tungsten oxide nanocrystals. Nano Energy 2017, 41, 634–645.

[26]

Gong, H.; Ai, J. R.; Li, W. Z.; Zhu, J. H.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Self-driven infrared electrochromic device with tunable optical and thermal management. ACS Appl. Mater. Interfaces 2021, 13, 50319–50328.

[27]

Wei, W.; Li, Z. Y.; Guo, Z. P.; Li, Y. H.; Hou, F. M.; Guo, W.; Wei, A. An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation. Appl. Surf. Sci. 2022, 571, 151277.

[28]

Li, H. Z.; Li, J. M.; Hou, C. Y.; Ho, D.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2017, 2, 1700047.

[29]

Wang, K.; Zhang, H. L.; Chen, G. X.; Tian, T.; Tao, K.; Liang, L. Y.; Gao, J. H.; Cao, H. T. Long-term-stable WO3-PB complementary electrochromic devices. J Alloys Compd. 2021, 861, 158534.

[30]

Tang, K.; Zhang, Y.; Shi, Y. D.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wang, J. H.; Tan, H. H.; Wu, Y. C. Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices. J. Mater. Chem. C 2018, 6, 12206–12216.

[31]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Yao, Q. F.; Fisher, A.; Lee, J. Y. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 2018, 5, 291–297.

[32]

Zhang, X.; Wei, Y. Z.; Yu, R. B. Multidimensional tungsten oxides for efficient solar energy conversion. Small Struct. 2022, 3, 2100130.

[33]

Wang, B. B.; Zhong, X. X.; Zhang, Y. H.; Xu, H. Y.; Zhang, Y. C. Microspheres assembled by WO3−x nanoparticles under action of dual surfactants: Structure and photoluminescence properties. Opt. Mater. 2022, 129, 112550.

[34]

Zhang, R. M.; Song, C. J.; Kou, M. P.; Yin, P. Q.; Jin, X. L.; Wang, L.; Deng, Y.; Wang, B.; Xia, D.; Wong, P. K. et al. Sterilization of Escherichia coli by photothermal synergy of WO3−x/C nanosheet under infrared light irradiation. Environ. Sci. Technol. 2020, 54, 3691–3701.

[35]

Jaryal, A.; Battula, V. R.; Kailasam, K. Oxygen Deficient WO3−x Nanorods and g-CN nanosheets heterojunctions: A 1D–2D interface with engineered band structure for cyclohexanol oxidation in visible light. ACS Appl. Energy Mater. 2020, 3, 4669–4676.

[36]

Salkar, A. V.; Fernandes, R. X.; Bhosale, S. V.; Morajkar, P. P. NH- and CH-Substituted ureas as self-assembly directing motifs for facile synthesis and electrocapacitive applications of advanced WO3−x one-dimensional nanorods. ACS Appl. Energy Mater. 2019, 2, 8724–8736.

[37]

Zhang, Z. Y.; Jiang, X. Y.; Liu, B. K.; Guo, L. J.; Lu, N.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv. Mater. 2018, 30, 1705221.

[38]

Sharma, P.; Kumar, N.; Chauhan, R.; Singh, V.; Srivastava, V. C.; Bhatnagar, R. Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J. 2020, 392, 123746.

[39]

Tian, Y. Y.; Cong, S.; Su, W. M.; Chen, H. Y.; Li, Q. W.; Geng, F. X.; Zhao, Z. G. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014, 14, 2150–2156.

[40]

Hai, G. J.; Huang, J. F.; Cao, L. Y.; Jie, Y. N.; Li, J. Y.; Wang, X.; Zhang, G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J. Alloys Compd. 2017, 690, 239–248.

[41]

Le Houx, N.; Pourroy, G.; Camerel, F.; Comet, M.; Spitzer, D. WO3 nanoparticles in the 5–30 nm range by solvothermal synthesis under microwave or resistive heating. J. Phys. Chem. C 2010, 114, 155–161.

[42]

Han, L. F.; Chen, J. L.; Zhang, Y. H.; Liu, Y. L.; Zhang, L.; Cao, S. K. Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance. Mater. Lett. 2018, 210, 8–11.

[43]

Shen, Y. B.; Wang, W.; Chen, X. X.; Zhang, B. Q.; Wei, D. Z.; Gao, S. L.; Cui, B. Y. Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. J. Mater. Chem. A 2016, 4, 1345–1352.

[44]

Landi, S.; Segundo, I. R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C. J. Use and misuse of the Kubelka–Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573.

[45]

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

[46]

Heo, S.; Kim, J.; Ong, G. K.; Milliron, D. J. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Lett. 2017, 17, 5756–5761.

[47]

Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

[48]

Ju, X. Q.; Yang, F.; Zhu, X.; Jia, X. L. Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustainable Chem. Eng. 2020, 8, 12222–12229.

Video
12274_2023_5600_MOESM2_ESM.mp4
12274_2023_5600_MOESM3_ESM.mp4
File
12274_2023_5600_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2023
Revised: 13 February 2023
Accepted: 21 February 2023
Published: 26 March 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was supported by the Tsinghua-Toyota Joint Research Fund, the National Key Research Program (Nos. 2020YFA0210702 and 2020YFC2201103), the National Natural Science Foundation of China (Nos. 51872156 and 22075163), and the China Postdoctoral Science Foundation funded project (No. 2022M721808).

Return