AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows

Ya Huang§Baoshun Wang§Pei LyuSiming ZhaoXueke WuShiliang ZhangRun LiQinyuan JiangFei WangYanlong ZhaoRufan Zhang( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

§ Ya Huang and Baoshun Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A simple and efficient method was proposed to synthesize WO3−x nanoflowers. The WO3−x nanoflowers achieved a quite low transmittance in the near infrared ray (NIR) region due to the oxygen-deficient, exhibited excellent dual-band electrochromic performance and good cycling stability, and demonstrated the potential application value in the field of smart windows.

Abstract

Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible (VIS) and near-infrared (NIR) light transmittance. As is known, the NIR region accounts for about 50% of the total solar radiation. Therefore, reducing the NIR transmittance of windows will play a crucial role in reducing the energy consumption of buildings. However, for most of the reported electrochromic materials (ECMs)-based windows, it remains a long-lasting challenge about how to achieve a low NIR transmittance during the past decades. In this work, we synthesize oxygen-deficient tungsten oxide (WO3−x) nanoflowers (NFs) by a simple and efficient method that is facile for their mass production. The WO3−x NFs exhibit low NIR transmittance of only 4.11%, 0.60%, and 0.19% at 1200, 1600, and 1800 nm, respectively, due to the localized surface plasmon resonance (LSPR) effect. Besides, the WO3−x NFs exhibit an excellent dual-band modulating ability for both VIS and NIR light. They are able to operate in three distinct modes, including a bright mode, a cool mode, and a dark mode. Moreover, the WO3−x NFs exhibit a fast bleaching/coloring time (1.54/6.67 s), and excellent cycling stability (97.75% of capacity retention after 4000 s).

Electronic Supplementary Material

Video
12274_2023_5600_MOESM2_ESM.mp4
12274_2023_5600_MOESM3_ESM.mp4
Download File(s)
12274_2023_5600_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Li, M.; Wu, Z. Z.; Zheng, M. T.; Chen, H.; Gould, T.; Zhang, S. Q. First-principles exploration of 2D benzenehexathiolate coordination nanosheets for broadband electrochromic devices. Adv. Funct. Mater. 2022, 32, 2202763.

[2]

Wang, K.; Meng, Q. C.; Wang, Q. K.; Zhang, W.; Guo, J. Q.; Cao, S.; Elezzabi, A. Y.; Yu, W. W.; Liu, L. H.; Li, H. Z. Advances in energy-efficient plasmonic electrochromic smart windows based on metal oxide nanocrystals. Adv. Energy Sustain. Res. 2021, 2, 2100117.

[3]

Xu, G. P.; Wang, B.; Song, S. S.; Ren, Z. C.; Liu, D. Q.; Zhang, L. P.; Li, Y. Dual-dynamic modulation of thermal radiation and electromagnetic interference shielding with the self-healing electrochromic device. Adv. Mater. Technol. 2022, 7, 2101381.

[4]

Gong, H.; Li, W. Z.; Fu, G. X.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Recent progress and advances in electrochromic devices exhibiting infrared modulation. J. Mater. Chem. A 2022, 10, 6269–6290.

[5]

Huang, Y.; Wang, B. S.; Chen, F. X.; Han, Y.; Zhang, W. S.; Wu, X. K.; Li, R.; Jiang, Q. Y.; Jia, X. L.; Zhang, R. F. Electrochromic materials based on ions insertion and extraction. Adv. Opt. Mater. 2022, 10, 2101783.

[6]

Yu, F.; Liu, W. B.; Ke, S. W.; Kurmoo, M.; Zuo, J. L.; Zhang, Q. C. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 2020, 11, 5534.

[7]

Huang, Y.; Wang, B. S.; Bai, X. J.; Han, Y.; Zhang, W. S.; Zhou, C. H.; Meng, H. B.; Chen, F. X.; Wu, X. K.; Jiang, Q. Y. et al. 3D pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability. Adv. Opt. Mater. 2022, 10, 2102399.

[8]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. A visible light-near-infrared dual-band smart window with internal energy storage. Joule 2019, 3, 1152–1162.

[9]

Cai, G. F.; Eh, A. L. S.; Ji, L.; Lee, P. S. Recent advances in electrochromic smart fenestration. Adv. Sustainable Sys. 2017, 1, 1700074.

[10]

Li, H. Z.; Zhang, W.; Elezzabi, A. Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 2020, 32, 2003574.

[11]

Wang, C. J.; Zhang, X. L.; Liu, S.; Zhang, H. L.; Wang, Q.; Zhang, C. L.; Gao, J. H.; Liang, L. Y.; Cao, H. T. Interfacial charge transfer and zinc ion intercalation and deintercalation dynamics in flexible multicolor electrochromic energy storage devices. ACS Appl. Energy Mater. 2022, 5, 88–97.

[12]

Guo, J. J.; Guo, X.; Sun, H. B.; Xie, Y. Z.; Diao, X. G.; Wang, M.; Zeng, X. P.; Zhang, Z. B. Unprecedented electrochromic stability of a-WO3−x thin films achieved by using a hybrid-cationic electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 11067–11077.

[13]

Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 2019, 141, 19831–19838.

[14]

Yang, G. J.; Zhang, Y. M.; Cai, Y. R.; Yang, B. G.; Gu, C.; Zhang, S. X. A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720.

[15]

Bessinger, D.; Muggli, K.; Beetz, M.; Auras, F.; Bein, T. Fast-switching Vis-IR electrochromic covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 7351–7357.

[16]

Zhang, S. L.; Li, Y.; Zhang, T. R.; Cao, S.; Yao, Q. F.; Lin, H. B.; Ye, H. L.; Fisher, A.; Lee, J. Y. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode. ACS Appl. Mater. Inter. 2019, 11, 48062–48070.

[17]

Cai, G. F.; Wang, J. X.; Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476.

[18]

Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.

[19]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Lee, J. Y. Plasmonic oxygen-deficient TiO2−x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 2020, 32, 2004686.

[20]

García-Tecedor, M.; Gorni, G.; Oropeza, F.; Gómez, L.; Liras, M.; De La Peña O'Shea, V. A.; Barawi, M. Unravelling nanostructured Nb-doped TiO2 dual band behaviour in smart windows by in situ spectroscopies. J. Mater. Chem. A 2022, 10, 19994–20004.

[21]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Lee, J. Y. Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 2018, 30, 4838–4846.

[22]

Wang, Z.; Zhang, Q. Z.; Cong, S.; Chen, Z. G.; Zhao, J. X.; Yang, M.; Zheng, Z. H.; Zeng, S.; Yang, X. W.; Geng, F. X. et al. Using intrinsic intracrystalline tunnels for near-infrared and visible-light selective electrochromic modulation. Adv. Opt. Mater. 2017, 5, 1700194.

[23]

Kim, J.; Ong, G. K.; Wang, Y.; LeBlanc, G.; Williams, T. E.; Mattox, T. M.; Helms, B. A.; Milliron, D. J. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 2015, 15, 5574–5579.

[24]

Gu, H. X.; Guo, C. S.; Zhang, S. H.; Bi, L. H.; Li, T. C.; Sun, T. D.; Liu, S. Q. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559–567.

[25]

Giannuzzi, R.; Scarfiello, R.; Sibillano, T.; Nobile, C.; Grillo, V.; Giannini, C.; Cozzoli, P. D.; Manca, M. From capacitance-controlled to diffusion-controlled electrochromism in one-dimensional shape-tailored tungsten oxide nanocrystals. Nano Energy 2017, 41, 634–645.

[26]

Gong, H.; Ai, J. R.; Li, W. Z.; Zhu, J. H.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Self-driven infrared electrochromic device with tunable optical and thermal management. ACS Appl. Mater. Interfaces 2021, 13, 50319–50328.

[27]

Wei, W.; Li, Z. Y.; Guo, Z. P.; Li, Y. H.; Hou, F. M.; Guo, W.; Wei, A. An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation. Appl. Surf. Sci. 2022, 571, 151277.

[28]

Li, H. Z.; Li, J. M.; Hou, C. Y.; Ho, D.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2017, 2, 1700047.

[29]

Wang, K.; Zhang, H. L.; Chen, G. X.; Tian, T.; Tao, K.; Liang, L. Y.; Gao, J. H.; Cao, H. T. Long-term-stable WO3-PB complementary electrochromic devices. J Alloys Compd. 2021, 861, 158534.

[30]

Tang, K.; Zhang, Y.; Shi, Y. D.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wang, J. H.; Tan, H. H.; Wu, Y. C. Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices. J. Mater. Chem. C 2018, 6, 12206–12216.

[31]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Yao, Q. F.; Fisher, A.; Lee, J. Y. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 2018, 5, 291–297.

[32]

Zhang, X.; Wei, Y. Z.; Yu, R. B. Multidimensional tungsten oxides for efficient solar energy conversion. Small Struct. 2022, 3, 2100130.

[33]

Wang, B. B.; Zhong, X. X.; Zhang, Y. H.; Xu, H. Y.; Zhang, Y. C. Microspheres assembled by WO3−x nanoparticles under action of dual surfactants: Structure and photoluminescence properties. Opt. Mater. 2022, 129, 112550.

[34]

Zhang, R. M.; Song, C. J.; Kou, M. P.; Yin, P. Q.; Jin, X. L.; Wang, L.; Deng, Y.; Wang, B.; Xia, D.; Wong, P. K. et al. Sterilization of Escherichia coli by photothermal synergy of WO3−x/C nanosheet under infrared light irradiation. Environ. Sci. Technol. 2020, 54, 3691–3701.

[35]

Jaryal, A.; Battula, V. R.; Kailasam, K. Oxygen Deficient WO3−x Nanorods and g-CN nanosheets heterojunctions: A 1D–2D interface with engineered band structure for cyclohexanol oxidation in visible light. ACS Appl. Energy Mater. 2020, 3, 4669–4676.

[36]

Salkar, A. V.; Fernandes, R. X.; Bhosale, S. V.; Morajkar, P. P. NH- and CH-Substituted ureas as self-assembly directing motifs for facile synthesis and electrocapacitive applications of advanced WO3−x one-dimensional nanorods. ACS Appl. Energy Mater. 2019, 2, 8724–8736.

[37]

Zhang, Z. Y.; Jiang, X. Y.; Liu, B. K.; Guo, L. J.; Lu, N.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv. Mater. 2018, 30, 1705221.

[38]

Sharma, P.; Kumar, N.; Chauhan, R.; Singh, V.; Srivastava, V. C.; Bhatnagar, R. Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J. 2020, 392, 123746.

[39]

Tian, Y. Y.; Cong, S.; Su, W. M.; Chen, H. Y.; Li, Q. W.; Geng, F. X.; Zhao, Z. G. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014, 14, 2150–2156.

[40]

Hai, G. J.; Huang, J. F.; Cao, L. Y.; Jie, Y. N.; Li, J. Y.; Wang, X.; Zhang, G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J. Alloys Compd. 2017, 690, 239–248.

[41]

Le Houx, N.; Pourroy, G.; Camerel, F.; Comet, M.; Spitzer, D. WO3 nanoparticles in the 5–30 nm range by solvothermal synthesis under microwave or resistive heating. J. Phys. Chem. C 2010, 114, 155–161.

[42]

Han, L. F.; Chen, J. L.; Zhang, Y. H.; Liu, Y. L.; Zhang, L.; Cao, S. K. Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance. Mater. Lett. 2018, 210, 8–11.

[43]

Shen, Y. B.; Wang, W.; Chen, X. X.; Zhang, B. Q.; Wei, D. Z.; Gao, S. L.; Cui, B. Y. Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. J. Mater. Chem. A 2016, 4, 1345–1352.

[44]

Landi, S.; Segundo, I. R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C. J. Use and misuse of the Kubelka–Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573.

[45]

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

[46]

Heo, S.; Kim, J.; Ong, G. K.; Milliron, D. J. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Lett. 2017, 17, 5756–5761.

[47]

Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

[48]

Ju, X. Q.; Yang, F.; Zhu, X.; Jia, X. L. Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustainable Chem. Eng. 2020, 8, 12222–12229.

Nano Research
Pages 12165-12172
Cite this article:
Huang Y, Wang B, Lyu P, et al. Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Research, 2023, 16(10): 12165-12172. https://doi.org/10.1007/s12274-023-5600-7
Topics:
Part of a topical collection:

1403

Views

26

Crossref

23

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 16 January 2023
Revised: 13 February 2023
Accepted: 21 February 2023
Published: 26 March 2023
© Tsinghua University Press 2023
Return