Journal Home > Volume 16 , Issue 7

Catalysts for chemoselective hydrogenation are of vital importance for the synthesis of various important chemicals and intermediates. Herein we developed a simple method for preparing a highly efficient Ni-MoCx nanocomposite catalyst via temperature-programmed carburization of a polyoxometalate precursor. X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analyses indicate that the resulting mesoporous nanocomposite catalyst is made up of well-dispersed metallic nickel particles embedded in a MoCx matrix. This catalyst exhibits high activity and selectivity (> 99%) in the hydrogenation of various substituted nitroaromatics to corresponding anilines. The high efficiency is attributed to the intimate contact of the constituents favoring electron transfer and hydrogen adsorption. Dihydrogen is physisorbed on the carbide support and dissociates on the nickel particles, as evidenced by Mo K-edge X-ray absorption near-edge structure (XANES) spectra, density functional theory (DFT), and hydrogen–deuterium exchange. The remarkable catalytic performance of the catalyst could be traced back to the synergistic interaction between the Ni particles and the carbide support. In-situ infrared spectroscopy and DFT simulations indicated that the adsorption/activation of the nitro group is favored compared to that of other substituents at the aromatic ring. In recyclability tests, the Ni-MoCx nanocomposite showed no significant loss of catalytic performance in seven consecutive runs, indicating its robust nature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics

Show Author's information Yifei Zhang1,2,§Zhiwen Li2,6,§Jingjing Zhang2Liangliang Xu3Zhong-Kang Han4( )Alfons Baiker5( )Gao Li2,6( )
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, Zurich CH-8093, Switzerland
University of Chinese Academy of Sciences, Beijing 100049, China

§ Yifei Zhang and Zhiwen Li contributed equally to this work.

Abstract

Catalysts for chemoselective hydrogenation are of vital importance for the synthesis of various important chemicals and intermediates. Herein we developed a simple method for preparing a highly efficient Ni-MoCx nanocomposite catalyst via temperature-programmed carburization of a polyoxometalate precursor. X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analyses indicate that the resulting mesoporous nanocomposite catalyst is made up of well-dispersed metallic nickel particles embedded in a MoCx matrix. This catalyst exhibits high activity and selectivity (> 99%) in the hydrogenation of various substituted nitroaromatics to corresponding anilines. The high efficiency is attributed to the intimate contact of the constituents favoring electron transfer and hydrogen adsorption. Dihydrogen is physisorbed on the carbide support and dissociates on the nickel particles, as evidenced by Mo K-edge X-ray absorption near-edge structure (XANES) spectra, density functional theory (DFT), and hydrogen–deuterium exchange. The remarkable catalytic performance of the catalyst could be traced back to the synergistic interaction between the Ni particles and the carbide support. In-situ infrared spectroscopy and DFT simulations indicated that the adsorption/activation of the nitro group is favored compared to that of other substituents at the aromatic ring. In recyclability tests, the Ni-MoCx nanocomposite showed no significant loss of catalytic performance in seven consecutive runs, indicating its robust nature.

Keywords: hydrogenation, synergistic effect, carburization of polyoxometalate, nitroaromatics, Ni-MoCx nanocomposite

References(65)

[1]

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B:Environ. 2018, 227, 386–408.

[2]

Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680.

[3]
Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
[4]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[5]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[6]

Li, Z. J.; Leng, L. P.; Lu, X. W.; Zhang, M. Y.; Xu, Q.; Horton, J. H.; Zhu, J. F. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Res. 2022, 15, 3114–3121.

[7]

Wang, J. S.; Du, C.; Wei, Q. H.; Shen, W. Z. Two-dimensional Pd nanosheets with enhanced catalytic activity for selective hydrogenation of nitrobenzene to aniline. Energy Fuels 2021, 35, 4358–4366.

[8]

Harraz, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A. Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. J. Catal. 2012, 286, 184–192.

[9]

Wang, X. Y.; Huang, C. R.; Li, X. H.; Xie, C. X.; Yu, S. T. PVA-encapsulated palladium nanoparticles: Eco-friendly and highly selective catalyst for hydrogenation of nitrobenzene in aqueous medium. Chem. Asian J. 2019, 14, 2266–2272.

[10]

Li, Y. H.; Zhu, L. H.; Yan, K. Q.; Zheng, J. B.; Chen, B. H.; Wang, W. J. A novel modification method for nickel foam support and synthesis of a metal-supported hierarchical monolithic Ni@Pd catalyst for benzene hydrogenation. Chem. Eng. J. 2013, 226, 166–170.

[11]

Serna, P.; Corma, A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal. 2015, 5, 7114–7121.

[12]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[13]

Shi, Q. Q.; Zhang, X. Y.; Liu, X.; Xu, L. L.; Liu, B. C.; Zhang, J.; Xu, H.; Han, Z. K.; Li, G. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible light. Carbon 2022, 196, 401–409.

[14]

Blaser, H. U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 2009, 1, 210–221.

[15]

Torres, G. C.; Jablonski, E. L.; Baronetti, G. T.; Castro, A. A.; de Miguel, S. R.; Scelza, O. A.; Blanco, M. D.; Pen˜a Jiménez, M. A.; Fierro, J. L. G. Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts. Appl. Catal. A Gen. 1997, 161, 213–226.

[16]

Nie, R. F.; Wang, J. H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596.

[17]

Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265–4270.

[18]

Shi, Q. Q.; Qin, Z. X.; Sharma, S.; Li, G. Recent progress in heterogeneous catalysis by atomically and structurally precise metal nanoclusters. Chem. Rec. 2021, 21, 879–892.

[19]

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

[20]

Zhang, Y. F.; Yang, X. J.; Zhou, Y.; Li, G.; Li, Z. M.; Liu, C.; Bao, M.; Shen, W. J. Selective hydrogenation of the C=C bond in α,β-unsaturated aldehydes and ketones over ultra-small Pd-Au clusters. Nanoscale 2016, 8, 18626–18629.

[21]

Ryabchuk, P.; Agostini, G.; Pohl, M. M.; Lund, H.; Agapova, A.; Junge, H.; Junge, K.; Beller, M. Intermetallic nickel silicide nanocatalyst—A non-noble metal-based general hydrogenation catalyst. Sci. Adv. 2018, 4, eaat0761.

[22]

Pisiewicz, S.; Formenti, D.; Surkus, A. E.; Pohl, M. M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M. Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions. ChemCatChem 2016, 8, 129–134.

[23]

Hahn, G.; Ewert, J. K.; Denner, C.; Tilgner, D.; Kempe, R. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. ChemCatChem 2016, 8, 2461–2465.

[24]

Miyazaki, M.; Ariyama, K.; Furukawa, S.; Takayama, T.; Komatsu, T. Chemoselective hydrogenation of nitroarenes using Ni-Fe alloy catalysts at ambient pressure. ChemistrySelect 2021, 6, 5538–5544.

[25]

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

[26]

Cui, X. L.; Zhou, X.; Dong, Z. P. Ultrathin γ-Fe2O3 nanosheets as a highly efficient catalyst for the chemoselective hydrogenation of nitroaromatic compounds. Catal. Commun. 2018, 107, 57–61.

[27]

Yun, R. R.; Zhan, F. Y.; Li, N.; Zhang, B. B.; Ma, W. J.; Hong, L. R.; Sheng, T.; Du, L. T.; Zheng, B. S.; Liu, S. J. Fe single atoms and Fe2O3 clusters liberated from N-doped polyhedral carbon for chemoselective hydrogenation under mild conditions. ACS Appl. Mater. Interfaces 2020, 12, 34122–34129.

[28]

Hu, A.; Lu, X. H.; Cai, D. M.; Pan, H. J.; Jing, R.; Xia, Q. H.; Zhou, D.; Xia, Y. D. Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions. Mol. Catal. 2019, 472, 27–36.

[29]

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

[30]

Liu, W. J.; Tian, K.; Jiang, H. One-pot synthesis of Ni-NiFe2O4/carbon nanofiber composites from biomass for selective hydrogenation of aromatic nitro compounds. Green Chem. 2015, 17, 821–826.

[31]

Xia, J. W.; He, G. Y.; Zhang, L. L.; Sun, X. Q.; Wang, X. Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Appl. Catal. B:Environ. 2016, 180, 408–415.

[32]

Sheng, Y.; Lin, X. R.; Yue, S. N.; Liu, Y.; Zou, X. J.; Wang, X. G.; Lu, X. G. Highly efficient non-noble metallic NiCu nanoalloy catalysts for hydrogenation of nitroarenes. Mater. Adv. 2021, 2, 6722–6730.

[33]

Ye, T. N.; Lu, Y. F.; Li, J.; Nakao, T.; Yang, H. S.; Tada, T.; Kitano, M.; Hosono, H. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions. J. Am. Chem. Soc. 2017, 139, 17089–17097.

[34]

Wolfbeisser, A.; Sophiphun, O.; Bernardi, J.; Wittayakun, J.; Föttinger, K.; Rupprechter, G. Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal. Today 2016, 277, 234–245.

[35]

Wei, X. J.; Rang, X.; Zhu, W. H.; Xiang, M.; Deng, Y. Y.; Jiang, F. H.; Mao, R.; Zhang, Z. W.; Kong, X. Q.; Wang, F. Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chem. Phys. 2021, 542, 111079.

[36]

Meng, X. C.; Cheng, H. Y.; Akiyama, Y.; Hao, Y. F.; Qiao, W. B.; Yu, Y. C.; Zhao, F. Y.; Fujita, S. I.; Arai, M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. J. Catal. 2009, 264, 1–10.

[37]

Millán, R.; Soriano, M. D.; Moreno, C. C.; Boronat, M.; Concepción, P. Combined spectroscopic and computational study of nitrobenzene activation on non-noble metals-based mono- and bimetallic catalysts. Nanomaterials 2021, 11, 2037.

[38]

Beswick, O.; Lamey, D.; Muriset, F.; LaGrange, T.; Oberson, L.; Yoon, S.; Sulman, E.; Dyson, P. J.; Kiwi-Minsker, L. Ni-based structured catalyst for selective 3-phase hydrogenation of nitroaromatics. Catal. Today 2016, 273, 244–251.

[39]

Sun, Y. Y.; Li, X. W.; Cai, Z. S.; Bai, H. Z.; Tang, G. P.; Hou, Z. Y. Synthesis of 3D N-doped graphene/carbon nanotube hybrids with encapsulated Ni NPs and their catalytic application in the hydrogenation of nitroarenes. Catal. Sci. Technol. 2018, 8, 4858–4863.

[40]

Wang, F.; Li, T.; Shi, Y.; Jiao, H. J. Molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt)—Metal and surface dependent structure and stability. Catal. Sci. Technol. 2020, 10, 3029–3046.

[41]

Dong, J. H.; Fu, Q.; Jiang, Z.; Mei, B. B.; Bao, X. H. Carbide-supported Au catalysts for water–gas shift reactions: A new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 2018, 140, 13808–13816.

[42]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[43]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei. Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[44]

Wen, Z. Y.; Li, Z. M.; Ge, Q. J.; Zhou, Y.; Sun, J.; Abroshan, H.; Li, G. Robust nickel cluster@Mes-HZSM-5 composite nanostructure with enhanced catalytic activity in the DTG reaction. J. Catal. 2018, 363, 26–33.

[45]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[46]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Perdew, J. P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 1992, 46, 12947–12954.

[49]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[50]

Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

[51]

Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399–3405.

[52]

Shi, Z. P.; Wang, Y. X.; Lin, H. L.; Zhang, H. B.; Shen, M. K.; Xie, S. H.; Zhang, Y. H.; Gao, Q. S.; Tang, Y. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: An efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 6006–6013.

[53]

Li, M. X.; Zhu, Y.; Wang, H. Y.; Wang, C.; Pinna, N.; Lu, X. F. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185.

[54]

Mansour, A. N.; Melendres, C. A. Characterization of slightly hydrated Ni(OH)2 by XPS. Surf. Sci. Spectra 1994, 3, 247–254.

[55]

Fang, Q. H.; Qin, Z. X.; Shi, Y. T.; Liu, F.; Barkaoui, S.; Abroshan, H.; Li, G. Au/NiO composite: A catalyst for one-pot cascade conversion of furfural. ACS Appl. Energy Mater. 2019, 2, 2654–2661.

[56]

Wang, T.; Dong, Z.; Fu, T.; Zhao, Y. C.; Wang, T.; Wang, Y. Z.; Chen, Y.; Han, B. H.; Ding, W. P. Nickel embedded in N-doped porous carbon for the hydrogenation of nitrobenzene to p-aminophenol in sulphuric acid. Chem. Commun. 2015, 51, 17712–17715.

[57]

Jiang, C. J.; Shang, Z. Y.; Liang, X. H. Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 2015, 5, 4814–4818.

[58]

Kim, M.; Kim, S.; Song, D.; Oh, S.; Chang, K. J.; Cho, E. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl. Catal. B:Environ. 2018, 227, 340–348.

[59]

Cao, Y. H.; Guo, S.; Yu, C. L.; Zhang, J. W.; Pan, X. L.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773.

[60]

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

[61]

Cao, Y. H.; Su, Y.; Xu, L. L.; Yang, X. H.; Han, Z. K.; Cao, R.; Li, G. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. J. Energy Chem. 2022, 71, 167–173.

[62]

Wojcieszak, R.; Monteverdi, S.; Ghanbaja, J.; Bettahar, M. M. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine. J. Colloid Interface Sci. 2008, 317, 166–174.

[63]

Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.

[64]

Tan, Y.; Liu, X. Y.; Li, L.; Kang, L. L.; Wang, A. Q.; Zhang, T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 174–182.

[65]

Ito, S.; Wang, X. W.; Waheed, A.; Li, G.; Maeda, N.; Meier, D. M.; Naito, S.; Baiker, A. Support effects in iridium-catalyzed aerobic oxidation of benzyl alcohol studied by modulation-excitation attenuated total reflection IR spectroscopy. J. Catal. 2021, 393, 42–50.

File
12274_2023_5598_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 January 2023
Revised: 18 February 2023
Accepted: 19 February 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China for supporting this work (No. 22172167). The 1W1B beamline of Beijing Synchrotron Radiation Facility and BL14W1 beamline of Shanghai Synchrotron Radiation Facility are acknowledged for providing the beam time.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return