Journal Home > Volume 16 , Issue 12

Interfacial assembly has been intensively investigated in fabricating biomaterials and nanodevices for various applications. Recently, due to the precise sequence programmability, unique molecular recognition ability, and good biocompatibility, deoxyribonucleic acid (DNA) has been explored as superior building blocks to assemble at bio-interface for manipulating biological entities. To the best of our knowledge, the advances in this area have not been systematically summarized. To provide an overview of the area, in this review, the recently developed DNA assembly strategies on bio-interfaces were well summarized, and their representative works are exampled to illustrate how to rationally and elaborately design DNA molecules to realize functional integration and emerging of novel biological functionalities with high controllability and programmability. Furthermore, the biomedical applications of DNA assembly at bio-interface are categorially elaborated. The fascinating and unique advantages of DNA assembly systems are fully discussed in the exemplified applications to show the distinguished perspective of DNA in the future development. At the end of this review, the current limitations and challenges in applications and potential improvement strategies for DNA assembly at bio-interface are fully discussed. The future development direction is deliberated. We envision that this review will help scientists in the interdisciplinary fields gain a more comprehensive understanding of the DNA assembly at bio-interface, and therefore jointly promote the advances in this field.


menu
Abstract
Full text
Outline
About this article

Self-assembly of DNA molecules at bio-interfaces and their emerging applications for biomedicines

Show Author's information Jing Li1Jingping Wang1Ling Chen1Yuhang Dong1Haonan Chen1Guangjun Nie2Feng Li1( )
College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

Abstract

Interfacial assembly has been intensively investigated in fabricating biomaterials and nanodevices for various applications. Recently, due to the precise sequence programmability, unique molecular recognition ability, and good biocompatibility, deoxyribonucleic acid (DNA) has been explored as superior building blocks to assemble at bio-interface for manipulating biological entities. To the best of our knowledge, the advances in this area have not been systematically summarized. To provide an overview of the area, in this review, the recently developed DNA assembly strategies on bio-interfaces were well summarized, and their representative works are exampled to illustrate how to rationally and elaborately design DNA molecules to realize functional integration and emerging of novel biological functionalities with high controllability and programmability. Furthermore, the biomedical applications of DNA assembly at bio-interface are categorially elaborated. The fascinating and unique advantages of DNA assembly systems are fully discussed in the exemplified applications to show the distinguished perspective of DNA in the future development. At the end of this review, the current limitations and challenges in applications and potential improvement strategies for DNA assembly at bio-interface are fully discussed. The future development direction is deliberated. We envision that this review will help scientists in the interdisciplinary fields gain a more comprehensive understanding of the DNA assembly at bio-interface, and therefore jointly promote the advances in this field.

Keywords: self-assembly, biomedicine, interfacial assembly, deoxyribonucleic acid nanotechnology

References(89)

[1]

Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T. Toward functional nanocomposites: Taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 2013, 42, 2654–2678.

[2]

Ma, Q. M.; Song, Y.; Sun, W. T.; Cao, J.; Yuan, H.; Wang, X. Y.; Sun, Y.; Shum, H. C. Cell-inspired all-aqueous microfluidics: From intracellular liquid–liquid phase separation toward advanced biomaterials. Adv. Sci. 2020, 7, 1903359.

[3]

Stein, A.; Wilson, B. E.; Rudisill, S. G. Design and functionality of colloidal-crystal-templated materials—Chemical applications of inverse opals. Chem. Soc. Rev. 2013, 42, 2763–2803.

[4]

Qin, L.; Duan, P. F.; Liu, M. H. Interfacial assembly and host–guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface. Chin. Chem. Lett. 2014, 25, 487–490.

[5]

Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: Host–guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115.

[6]

Jiang, Y. F.; Löbling, T. I.; Huang, C. L.; Sun, Z. W.; Müller, A. H. E.; Russell, T. P. Interfacial assembly and jamming behavior of polymeric janus particles at liquid interfaces. ACS Appl. Mater. Interfaces 2017, 9, 33327–33332.

[7]

Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006–1009.

[8]

Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Nanoparticle assembly and transport at liquid–liquid interfaces. Science 2003, 299, 226–229.

[9]

Yang, P.; Li, Y. Y.; Mason, S. D.; Chen, F. F.; Chen, J. B.; Zhou, R. X.; Liu, J. W.; Hou, X. D.; Li, F. Concentric DNA amplifier that streamlines in-solution biorecognition and on-particle biocatalysis. Anal. Chem. 2020, 92, 3220–3227.

[10]

Jeon, I.; Peeks, M. D.; Savagatrup, S.; Zeininger, L.; Chang, S.; Thomas, G.; Wang, W.; Swager, T. M. Janus graphene: Scalable self-assembly and solution-phase orthogonal functionalization. Adv. Mater. 2019, 31, 1900438.

[11]

Tian, R. R.; Hu, G. R.; Ou, X. W.; Luo, M. B.; Li, J. Y. Dynamic behaviors of interfacial water on the self-assembly monolayer (SAM) heterogeneous surface. J. Chem. Phys. 2020, 153, 124705.

[12]

Jin, H. J.; Xie, M. Q.; Wang, W. K.; Jiang, L. X.; Chang, W. Y.; Sun, Y.; Xu, L. M.; Zang, S. H.; Huang, J. B.; Yan, Y. et al. Pressing-induced caking: A general strategy to scale-span molecular self-assembly. CCS Chem. 2020, 2, 98–106.

[13]

Yao, C.; Ou, J. H.; Tang, J. P.; Yang, D. Y. DNA supramolecular assembly on micro/nanointerfaces for bioanalysis. Acc. Chem. Res. 2022, 55, 2043–2054.

[14]

Li, J.; Mo, L. T.; Lu, C. H.; Fu, T.; Yang, H. H.; Tan, W. H. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 2016, 45, 1410–1431.

[15]

Li, J. W.; Li, Y.; Chan, C. Y. K.; Kwok, R. T. K.; Li, H. K.; Zrazhevskiy, P.; Gao, X. H.; Sun, J. Z.; Qin, A. J.; Tang, B. Z. An aggregation-induced-emission platform for direct visualization of interfacial dynamic self-assembly. Angew. Chem., Int. Ed. 2014, 53, 13518–13522.

[16]

Liu, Z.; Lei, S.; Zou, L. N.; Li, G. P.; Xu, L. L.; Ye, B. X. Highly ordered 3D electrochemical DNA biosensor based on dual orientation controlled rolling motor and graftable tetrahedron DNA. Biosens. Bioelectron. 2020, 147, 111759.

[17]

Kahn, J. S.; Gang, O. Designer nanomaterials through programmable assembly. Angew. Chem., Int. Ed. 2022, 61, e202105678.

[18]

Franklin, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740–741.

[19]

Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling materials with DNA as the guide. Science 2008, 321, 1795–1799.

[20]

Schneider, A. K.; Niemeyer, C. M. DNA surface technology: From gene sensors to integrated systems for life and materials sciences. Angew. Chem., Int. Ed. 2018, 57, 16959–16967.

[21]

Li, F.; Tang, J. P.; Geng, J. H.; Luo, D.; Yang, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Prog. Polym. Sci. 2019, 98, 101163.

[22]

Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. Soc. 2014, 136, 11198–11211.

[23]

Custódio, C. A.; Mano, J. F. Cell surface engineering to control cellular interactions. ChemNanoMat 2016, 2, 376–384.

[24]

Li, L. X.; Liu, S.; Zhang, C. J.; Guo, Z. Z.; Shao, S. X.; Deng, X. D.; Liu, Q. L. Recent advances in DNA-based cell surface engineering for biological applications. Chem.—Eur. J. 2022, 28, e202202070.

[25]

Shi, P.; Wang, Y. Synthetic DNA for cell-surface engineering. Angew. Chem., Int. Ed. 2021, 60, 11580–11591.

[26]

Yang, W.; Liu, X. C.; Li, H. F.; Zhou, J.; Chen, S.; Wang, P. F.; Li, J.; Yang, H. H. Disulfide-containing molecular sticker assists cellular delivery of DNA nanoassemblies by bypassing endocytosis. CCS Chem. 2021, 3, 1178–1186.

[27]

Hu, Y. W.; Cecconello, A.; Idili, A.; Ricci, F.; Willner, I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem., Int. Ed. 2017, 56, 15210–15233.

[28]

Li, J.; Green, A. A.; Yan, H.; Fan, C. H. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 2017, 9, 1056–1067.

[29]

Kohman, R. E.; Kunjapur, A. M.; Hysolli, E.; Wang, Y.; Church, G. M. From designing the molecules of life to designing life: Future applications derived from advances in DNA technologies. Angew. Chem., Int. Ed. 2018, 57, 4313–4328.

[30]

Chandra, R. A.; Douglas, E. S.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem., Int. Ed. 2006, 45, 896–901.

[31]

Borisenko, G. G.; Zaitseva, M. A.; Chuvilin, A. N.; Pozmogova, G. E. DNA modification of live cell surface. Nucleic Acids Res. 2009, 37, e28.

[32]

Hsiao, S. C.; Shum, B. J.; Onoe, H.; Douglas, E. S.; Gartner, Z. J.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns. Langmuir 2009, 25, 6985–6991.

[33]

Liu, X. W.; Yan, H.; Liu, Y.; Chang, Y. Targeted cell–cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 2011, 7, 1673–1682.

[34]

Selden, N. S.; Todhunter, M. E.; Jee, N. Y.; Liu, J. S.; Broaders, K. E.; Gartner, Z. J. Chemically programmed cell adhesion with membrane-anchored oligonucleotides. J. Am. Chem. Soc. 2012, 134, 765–768.

[35]

You, M. X.; Zhu, G. Z.; Chen, T.; Donovan, M. J.; Tan, W. H. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 2015, 137, 667–674.

[36]

Song, P.; Ye, D. K.; Zuo, X. L.; Li, J.; Wang, J. B.; Liu, H. J.; Hwang, M. T.; Chao, J.; Su, S.; Wang, L. H. et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017, 17, 5193–5198.

[37]

Shi, P.; Zhao, N.; Lai, J. P.; Coyne, J.; Gaddes, E. R.; Wang, Y. Polyvalent display of biomolecules on live cells. Angew. Chem., Int. Ed. 2018, 57, 6800–6804.

[38]

Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M. Z.; Zhao, Y. M.; Yang, L. L.; Han, D.; Tan, W. H. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J. Am. Chem. Soc. 2019, 141, 12738–12743.

[39]

Shi, P.; Wang, X. L.; Davis, B.; Coyne, J.; Dong, C.; Reynolds, J.; Wang, Y. In situ synthesis of an aptamer-based polyvalent antibody mimic on the cell surface for enhanced interactions between immune and cancer cells. Angew. Chem., Int. Ed. 2020, 59, 11892–11897.

[40]

Yao, C.; Tang, H.; Wu, W. J.; Tang, J. P.; Guo, W. W.; Luo, D.; Yang, D. Y. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc. 2020, 142, 3422–3429.

[41]

Lu, Z. W.; Shi, Y.; Ma, Y. X.; Jia, B.; Li, X. T.; Guan, X. X.; Li, Z. Fast and specific enrichment and quantification of cancer-related exosomes by DNA-nanoweight-assisted centrifugation. Anal. Chem. 2022, 94, 9466–9471.

[42]

Wang, H. Z.; Zeng, J. H.; Huang, J.; Cheng, H.; Chen, B.; Hu, X.; He, X. X.; Zhou, Y.; Wang, K. M. A self-serviced-track 3D DNA walker for ultrasensitive detection of tumor exosomes by glycoprotein profiling. Angew. Chem., Int. Ed. 2022, 61, e202116932.

[43]

Li, F.; Liu, Y. J.; Dong, Y. H.; Chu, Y. W.; Song, N. C.; Yang, D. Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022, 144, 4667–4677.

[44]

Gao, F.; Yang, D. L.; Xu, F.; Ma, X. W.; Wang, P. F. Promoting cell fusion by polyvalent DNA ligands. Nano Lett. 2022, 22, 3018–3025.

[45]

Yang, X. Q.; Yang, L. J.; Yang, D. L.; Li, M.; Wang, P. F. In situ DNA self-assembly on the cell surface drives unidirectional clustering of membrane proteins for the modulation of cell behaviors. Nano Lett. 2022, 22, 3410–3416.

[46]

Mager, M. D.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

[47]

Vogel, K.; Glettenberg, M.; Schroeder, H.; Niemeyer, C. M. DNA-modification of eukaryotic cells. Small 2013, 9, 255–262.

[48]

Charter, N. W.; Mahal, L. K.; Koshland, D. E.; Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 2002, 277, 9255–9261.

[49]

Zhao, W. A.; Loh, W.; Droujinine, I. A.; Teo, W.; Kumar, N.; Schafer, S.; Cui, C. H.; Zhang, L.; Sarkar, D.; Karnik, R. et al. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell–cell interactions. FASEB J. 2011, 25, 3045–3056.

[50]

Cui, C.; Zhang, H.; Wang, R. W.; Cansiz, S.; Pan, X. S.; Wan, S.; Hou, W. J.; Li, L.; Chen, M. W.; Liu, Y. et al. Recognition-then-reaction enables site-selective bioconjugation to proteins on live-cell surfaces. Angew. Chem., Int. Ed. 2017, 56, 11954–11957.

[51]

Liu, H.; Yang, Q. X.; Peng, R. Z.; Kuai, H. L.; Lyu, Y.; Pan, X. S.; Liu, Q. L.; Tan, W. H. Artificial signal feedback network mimicking cellular adaptivity. J. Am. Chem. Soc. 2019, 141, 6458–6461.

[52]

Ge, Z. L.; Liu, J. B.; Guo, L. J.; Yao, G. B.; Li, Q.; Wang, L. H.; Li, J.; Fan, C. H. Programming cell–cell communications with engineered cell origami clusters. J. Am. Chem. Soc. 2020, 142, 8800–8808.

[53]

Wan, S.; Zhang, L. Q.; Wang, S.; Liu, Y.; Wu, C. C.; Cui, C.; Sun, H.; Shi, M. L.; Jiang, Y.; Li, L. et al. Molecular recognition-based DNA nanoassemblies on the surfaces of nanosized exosomes. J. Am. Chem. Soc. 2017, 139, 5289–5292.

[54]

Shi, P.; Zhao, N.; Coyne, J.; Wang, Y. DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 2019, 10, 2223.

[55]

Kacherovsky, N.; Cardle, I. I.; Cheng, E. L.; Yu, J. L.; Baldwin, M. L.; Salipante, S. J.; Jensen, M. C.; Pun, S. H. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy. Nat. Biomed. Eng. 2019, 3, 783–795.

[56]

Kumar, R. S.; Arunachalam, S.; Periasamy, V. S.; Preethy, C. P.; Riyasdeen, A.; Akbarsha, M. A. Surfactant-cobalt(III) complexes: Synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J. Inorg. Biochem. 2009, 103, 117–127.

[57]

Sefah, K.; Shangguan, D. H.; Xiong, X. L.; O’Donoghue, M. B.; Tan, W. H. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185.

[58]

Alam, K. K.; Chang, J. L.; Burke, D. H. FASTAptamer: A bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol. Ther. Nucleic Acids 2015, 4, e230.

[59]

Soontornworajit, B.; Zhou, J.; Shaw, M. T.; Fan, T. H.; Wang, Y. Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem. Commun. 2010, 46, 1857–1859.

[60]

Liu, C.; Han, J. L.; Pei, Y. X.; Du, J. Aptamer functionalized DNA hydrogel for wise-stage controlled protein release. Appl. Sci. 2018, 8, 1941.

[61]

Peng, R. Z.; Zheng, X. F.; Lyu, Y. F.; Xu, L. J.; Zhang, X. B.; Ke, G. L.; Liu, Q. L.; You, C. J.; Huan, S. Y.; Tan, W. H. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces. J. Am. Chem. Soc. 2018, 140, 9793–9796.

[62]

Wu, L. L.; Wang, Y. D.; Xu, X.; Liu, Y. L.; Lin, B. Q.; Zhang, M. X.; Zhang, J. L.; Wan, S.; Yang, C. Y.; Tan, W. H. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev. 2021, 121, 12035–12105.

[63]

Li, M.; Ding, H. M.; Lin, M. H.; Yin, F. F.; Song, L.; Mao, X. H.; Li, F.; Ge, Z. L.; Wang, L. H.; Zuo, X. L. et al. DNA framework-programmed cell capture via topology-engineered receptor–ligand interactions. J. Am. Chem. Soc. 2019, 141, 18910–18915.

[64]

Yao, C.; Zhu, C. X.; Tang, J. P.; Ou, J. H.; Zhang, R.; Yang, D. Y. T lymphocyte-captured DNA network for localized immunotherapy. J. Am. Chem. Soc. 2021, 143, 19330–19340.

[65]

Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406.

[66]

Stappenbeck, T. S.; Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 2009, 324, 1666–1669.

[67]

Finke, A.; Schneider, A. K.; Spreng, A. S.; Leist, M.; Niemeyer, C. M.; Marx, A. Functionalized DNA hydrogels produced by polymerase-catalyzed incorporation of non-natural nucleotides as a surface coating for cell culture applications. Adv. Healthc. Mater. 2019, 8, 1900080.

[68]

Li, J.; Xun, K. Y.; Pei, K.; Liu, X. J.; Peng, X. Y.; Du, Y. L.; Qiu, L. P.; Tan, W. H. Cell-membrane-anchored DNA Nanoplatform for programming cellular interactions. J. Am. Chem. Soc. 2019, 141, 18013–18020.

[69]

Hou, M.; Yin, X.; Jiang, J. H.; He, J. J. DNAzyme-triggered sol-gel-sol transition of a hydrogel allows target cell enrichment. ACS Appl. Mater. Interfaces 2021, 13, 15031–15039.

[70]

Liu, J. B.; Li, M.; Zuo, X. L. DNA nanotechnology-empowered live cell measurements. Small 2022, 18, 2204711.

[71]

Xiao, M. S.; Lai, W.; Yao, X. W.; Pei, H.; Fan, C. H.; Li, L. Programming receptor clustering with DNA probabilistic circuits for enhanced natural killer cell recognition. Angew. Chem., Int. Ed. 2022, 61, e202203800.

[72]

Lin, M. J.; Chen, Y. Y.; Zhao, S. S.; Tang, R.; Nie, Z.; Xing, H. A biomimetic approach for spatially controlled cell membrane engineering using fusogenic spherical nucleic acid. Angew. Chem., Int. Ed. 2022, 61, e202111647.

[73]

Peruzzi, J. A.; Jacobs, M. L.; Vu, T. Q.; Wang, K. S.; Kamat, N. P. Barcoding biological reactions with DNA-functionalized vesicles. Angew. Chem., Int. Ed. 2019, 58, 18683–18690.

[74]

Sun, L. L.; Gao, Y. J.; Wang, Y. G.; Wei, Q.; Shi, J. Y.; Chen, N.; Li, D.; Fan, C. H. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem. Sci. 2018, 9, 5967–5975.

[75]

Yu, L.; Mu, Y. K.; Sa, N.; Wang, H. B.; Xu, W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol. Rep. 2014, 31, 321–327.

[76]

Guo, Z. Z.; Zhang, L. L.; Yang, Q. X.; Peng, R. Z.; Yuan, X.; Xu, L. J.; Wang, Z. M.; Chen, F. M.; Huang, H. D.; Liu, Q. L. et al. Manipulation of multiple cell–cell interactions by tunable DNA scaffold networks. Angew. Chem., Int. Ed. 2022, 61, e202111151.

[77]

Pan, J.; Du, Y. C.; Qiu, H. M.; Upton, L. R.; Li, F. R.; Choi, J. H. Mimicking chemotactic cell migration with DNA programmable synthetic vesicles. Nano Lett. 2019, 19, 9138–9144.

[78]

Matsumoto, A.; Takahashi, Y.; Ariizumi, R.; Nishikawa, M.; Takakura, Y. Development of DNA-anchored assembly of small extracellular vesicle for efficient antigen delivery to antigen presenting cells. Biomaterials 2019, 225, 119518.

[79]

Xiong, X. L.; Liu, H. P.; Zhao, Z. L.; Altman, M. B.; Lopez-Colon, D.; Yang, C. J.; Chang, L. J.; Liu, C.; Tan, W. H. DNA aptamer-mediated cell targeting. Angew. Chem., Int. Ed. 2013, 52, 1472–1476.

[80]

Zhang, D.; Zheng, Y. S.; Lin, Z. G.; Liu, X. L.; Li, J.; Yang, H. H.; Tan, W. H. Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew. Chem., Int. Ed. 2020, 59, 12022–12028.

[81]

Parent, C. A. Making all the right moves: Chemotaxis in neutrophils and Dictyostelium. Curr. Opin. Cell Biol. 2004, 16, 4–13.

[82]

Vafai, S. B.; Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491, 374–383.

[83]

Zhou, H. J.; Zhang, B.; Zheng, J. J.; Yu, M. F.; Zhou, T.; Zhao, K.; Jia, Y. X.; Gao, X. F.; Chen, C. Y.; Wei, T. T. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 2014, 35, 1597–1607.

[84]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[85]

Wang, D.; Liu, P. F.; Luo, D. Putting DNA to work as generic polymeric materials. Angew. Chem., Int. Ed. 2022, 61, e202110666.

[86]

Wu, L. L.; Wang, Y. D.; Zhu, L.; Liu, Y. L.; Wang, T.; Liu, D.; Song, Y. L.; Yang, C. Y. Aptamer-based liquid biopsy. ACS Appl. Bio Mater. 2020, 3, 2743–2764.

[87]

Lim, F.; Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210, 908–910.

[88]

Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O’Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 2017, 9, 537–545.

[89]

Zhao, S. T.; Zhang, L. L.; Han, J. F.; Chu, J. H.; Wang, H.; Chen, X. L.; Wang, Y. W.; Tun, N.; Lu, L. C.; Bai, X. F. et al. Conformal nanoencapsulation of allogeneic T cells mitigates graft-versus-host disease and retains graft-versus-leukemia activity. ACS Nano 2016, 10, 6189–6200.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 December 2022
Revised: 17 February 2023
Accepted: 20 February 2023
Published: 28 April 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 31971305 and 21905196) and Fundamental Research Funds for the Central University (Nos. buctrc201915 and XK1802-8).

Return