Journal Home > Volume 16 , Issue 5

Ag nanoparticles were in-situ grown on the surface of MXene nanosheets to prepare thermally conductive hetero-structured MXene@Ag fillers. With polyvinyl alcohol (PVA) as the polymer matrix, thermally conductive MXene@Ag/PVA composite films were fabricated by the processes of solution blending, pouring, and evaporative self-assembly. With the same mass fraction, MXene@Ag-III (MXene/Ag, 2:1, w/w) presents more significant improvement in thermal conductivity coefficient (λ) than MXene@Ag, single MXene, Ag, and simply blending MXene/Ag. MXene@Ag-III/PVA composite films show dual functions of excellent thermal conductivity and electromagnetic interference (EMI) shielding. When the mass fraction of MXene@Ag-III is 60 wt.%, the in-plane λ (λ), through-plane λ (λ), and EMI shielding effectiveness (EMI SE) are 3.72 and 0.41 W/(m∙K), and 32 dB, which are increased by 3.1, 1.3, and 105.7 times than those of pure PVA film (0.91 and 0.18 W/(m∙K), and 0.3 dB), respectively. The 60 wt.% MXene@Ag-III/PVA composite film also has satisfying mechanical and thermal properties, with Young’s modulus, glass transition temperature, and heat resistance index of 3.8 GPa, 58.5 and 175.3 °C, respectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers

Show Author's information Mukun Li1Yuyao Sun1Dianying Feng3Kunpeng Ruan2( )Xia Liu3Junwei Gu1,2( )
Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Shandong Nonmetallic Materials Institute, Jinan 250031, China

Abstract

Ag nanoparticles were in-situ grown on the surface of MXene nanosheets to prepare thermally conductive hetero-structured MXene@Ag fillers. With polyvinyl alcohol (PVA) as the polymer matrix, thermally conductive MXene@Ag/PVA composite films were fabricated by the processes of solution blending, pouring, and evaporative self-assembly. With the same mass fraction, MXene@Ag-III (MXene/Ag, 2:1, w/w) presents more significant improvement in thermal conductivity coefficient (λ) than MXene@Ag, single MXene, Ag, and simply blending MXene/Ag. MXene@Ag-III/PVA composite films show dual functions of excellent thermal conductivity and electromagnetic interference (EMI) shielding. When the mass fraction of MXene@Ag-III is 60 wt.%, the in-plane λ (λ), through-plane λ (λ), and EMI shielding effectiveness (EMI SE) are 3.72 and 0.41 W/(m∙K), and 32 dB, which are increased by 3.1, 1.3, and 105.7 times than those of pure PVA film (0.91 and 0.18 W/(m∙K), and 0.3 dB), respectively. The 60 wt.% MXene@Ag-III/PVA composite film also has satisfying mechanical and thermal properties, with Young’s modulus, glass transition temperature, and heat resistance index of 3.8 GPa, 58.5 and 175.3 °C, respectively.

Keywords: thermal conductivity, electromagnetic interference shielding, hetero-structured MXene@Ag fillers, polyvinyl alcohol composite films

References(56)

[1]

Smith, A. T.; Shen, K. Y.; Hou, Z. L.; Zeng, S. S.; Jin, J.; Ning, C. J.; Zhao, Y. F.; Sun, L. Y. Dual photo- and mechanochromisms of graphitic carbon nitride/polyvinyl alcohol film. Adv. Funct. Mater. 2022, 32, 2110285.

[2]

Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.

[3]

Li, Z. P.; Deng, L.; Lv, H. C.; Liang, L. R.; Deng, W. J.; Zhang, Y. C.; Chen, G. M. Mechanically robust and flexible films of ionic liquid-modulated polymer thermoelectric composites. Adv. Funct. Mater. 2021, 31, 2104836.

[4]

Yu, J. W.; Gu, W. H.; Zhao, H. Q.; Ji, G. B. Lightweight, flexible, and freestanding PVA/PEDOT: PSS/Ag NWs film for high-performance electromagnetic interference shielding. Sci. China Mater. 2021, 64, 1723–1732.

[5]

Wang, W.; Wang, S.; Xiang, C. X.; Xue, D.; Li, M. F.; Liu, Q. Z.; Piao, L.; Wang, D. Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications. Nano Res. 2022, 15, 564–572.

[6]

Chen, W. H.; Liu, P. J.; Min, L. Z.; Zhou, Y. M.; Liu, Y.; Wang, Q.; Duan, W. Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-Micro Lett. 2018, 10, 39.

[7]

Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

[8]

Chen, Q.; Ma, Z. W.; Wang, Z. Z.; Liu, L.; Zhu, M. H.; Lei, W. W.; Song, P. G. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

[9]

Gong, S.; Sheng, X. X.; Li, X. L.; Sheng, M. J.; Wu, H.; Lu, X.; Qu, J. P. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 2022, 32, 2200570.

[10]

Xu, C. Y.; Li, E. C.; Zeng, J. J.; Wang, Y.; Wang, T.; Ge, C.; Zhang, C.; Wang, Q.; Gao, T.; Yao, Y. G. et al. Interfacial thermal conductance enhancement of BN/PVA composites via plasma activations of fillers. Compos. Commun. 2021, 28, 100963.

[11]

Wang, W. B.; Liu, B. T.; Lv, X. M. Robust PU foam skeleton coated with hydroxylated BN as PVA thermal conductivity filler via microwave-assisted curing. J. Mater. Sci. Mater. Electron. 2021, 32, 27524–27533.

[12]

Zhang, Y.; He, H.; Huang, B.; Wang, S. Z.; He, X. F. Enhanced thermal conductivity of polyvinyl alcohol insulation composites with m-BN@CNW hybrid materials. Compos. Sci. Technol. 2021, 208, 108766.

[13]

Luo, F. H.; Ma, C.; Tang, Y. H.; Zhou, L. T.; Ding, Y. P.; Chen, G. H. Sandwich-structured flexible PVA/CS@MWCNTs composite films with high thermal conductivity and excellent electrical insulation. Polymers 2022, 14, 2512.

[14]

Zhang, H. Z.; Wu, K.; Jiao, E. X.; Chen, B.; Shi, J.; Lu, M. G. Greatly improved thermal conductivity and electrical insulation for PVA composites via introducing functional carbon nitride nanosheets. Eur. Polym. J. 2021, 159, 110718.

[15]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[16]

Zheng, J. L.; Deng, Y.; Liu, Y. L.; Wu, F. Z.; Wang, W. H.; Wang, H.; Sun, S. Y.; Lu, J. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications. Chem. Eng. J. 2023, 453, 139727.

[17]

Yang, S. D.; He, Y. S.; Zhang, J. H. Fluorine-terminated functionalized liquid metal/silicon carbide binary nanoparticles for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant. Surf. Interfaces 2022, 35, 102408.

[18]

Hu, J. J.; Hou, X. G.; Yang, T.; Wang, Y.; Si, K.; Xia, H. Y. Thermal management performance of polyvinyl alcohol composite with boron phosphide decorated reduced graphene oxide. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106847.

[19]

Chen, Q.; Wang, Z. Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106738.

[20]

Luo, F. H.; Zhang, M.; Chen, S. L.; Xu, J. F.; Ma, C.; Chen, G. H. Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 2021, 207, 108707.

[21]

Zhou, J. W.; Yu, Z. X.; Lv, Y. R.; Wang, C.; Hu, P.; Liu, Y. Highly thermal conductivity of PVA-based nanocomposites by constructing MWCNT-BNNS conductive paths. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107195.

[22]

Yan, C. Z.; Yu, T. H.; Ji, C.; Kang, D. J.; Wang, N.; Sun, R.; Wong, C. P. Tailoring highly thermal conductive properties of Te/MoS2/Ag heterostructure nanocomposites using a bottom–up approach. Adv. Electron. Mater. 2019, 5, 1800548.

[23]

Ji, C.; Yan, C. Z.; Wang, Y.; Xiong, S. X.; Zhou, F. R.; Li, Y. Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B Eng. 2019, 163, 363–370.

[24]

Fu, C. J.; Yan, C. Z.; Ren, L. L.; Zeng, X. L.; Du, G. P.; Sun, R.; Xu, J. B.; Wong, C. P. Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles. Compos. Sci. Technol. 2019, 177, 118–126.

[25]

Yan, W.; Zhang, Y.; Sun, H. W.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. J. Mater. Chem. A 2014, 2, 20958–20965.

[26]

Ruan, K. P.; Yan, H.; Zhang, S. J.; Shi, X. T.; Guo, Y. Q.; Gu, J. W. In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Compos. Sci. Technol. 2021, 210, 108799.

[27]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[28]

Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 2023, 35, 2207969.

[29]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[30]

Liu, S.; Wang, S.; Sang, M.; Zhou, J. Y.; Zhang, J. S.; Xuan, S. H.; Gong, X. L. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding. ACS Nano 2022, 16, 19067–19086.

[31]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[32]

Ying, M. F.; Zhao, R. Z.; Hu, X.; Zhang, Z. H.; Liu, W. W.; Yu, J. Y.; Liu, X. L.; Liu, X. G.; Rong, H. W.; Wu, C. et al. Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem., Int. Ed. 2022, 61, e202201323.

[33]

Wang, B. B.; Jia, P. F.; Zhang, Y.; He, R. F.; Song, L.; Hu, Y. Multifunctional composite polyvinyl alcohol films prepared with economic conductive carbon black and MXene microcapsuled APP. Mater. Today Phys. 2023, 30, 100928.

[34]

Pal Singh, P.; De, A.; Khatua, B. B. Hydro-tunable CZTO/SWCNT/PVA/PDMS hybrid composites for smart green EMI shielding. J. Mater. Chem. C 2022, 10, 16903–16913.

[35]

Si, Y. F.; Jin, H. H.; Zhang, Q.; Xu, D. W.; Xu, R. X.; Ding, A. X.; Liu, D. Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding. Ceram. Int. 2022, 48, 24898–24905.

[36]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

[37]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Wang, S. J.; Du, Y.; Xu, Z. P.; Deng, X. L.; Dou, S. X.; Jiang, L. et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 2022, 13, 7340.

[38]

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

[39]
Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater., in press, https://doi.org/10.1002/adma.202211642.
DOI
[40]

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

[41]

Maiti, N.; Thomas, S.; Debnath, A.; Kapoor, S. Raman and XPS study on the interaction of taurine with silver nanoparticles. RSC Adv. 2016, 6, 56406–56411.

[42]

Shen, J.; Liu, G. Z.; Ji, Y. F.; Liu, Q.; Cheng, L.; Guan, K. C.; Zhang, M. C.; Liu, G. P.; Xiong, J.; Yang, J. et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 2018, 28, 1801511.

[43]

Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable Synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.

[44]

Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2013, 28, 100–103.

[45]

Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521.

[46]

Zhao, K. C.; Liu, G.; Cao, W. X.; Su, Z. H.; Zhao, J. W.; Han, J. C.; Dai, B.; Cao, K. L.; Zhu, J. Q. A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Polymer 2020, 206, 122885.

[47]

Wang, X. D.; Hu, W. Z.; Hu, Y. Polydopamine-bridged synthesis of ternary h-BN@PDA@TiO2 as nanoenhancers for thermal conductivity and flame retardant of polyvinyl alcohol. Front. Chem. 2020, 8, 587474.

[48]

Wang, X.; Ji, S. L.; Wang, X. Q.; Bian, H. Y.; Lin, L. R.; Dai, H. Q.; Xiao, H. N. Thermally conductive, super flexible, and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles. J. Mater. Chem. C 2019, 7, 14159–14169.

[49]

Choi, B. K.; Lee, H. J.; Choi, W. K.; Lee, M. K.; Park, J. H.; Hwang, J. Y.; Seo, M. K. Effect of carbon fiber content on thermal and electrical conductivity, EMI shielding efficiency, and radiation energy of CMC/PVA composite papers with carbon fibers. Synth. Met. 2021, 273, 116708.

[50]

El-Shamy, A. G. Polyvinyl alcohol and silver decorated carbon quantum-dots for new nano-composites with application electromagnetic interface (EMI) shielding. Prog. Org. Coat. 2020, 146, 105747.

[51]

Yao, Y. Y.; Jin, S. H.; Wang, M. M.; Gao, F.; Xu, B. L.; Lv, X. J.; Shu, Q. H. MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding. Appl. Surf. Sci. 2022, 578, 152007.

[52]

Wang, W.; Yuen, A. C. Y.; Long, H.; Yang, W.; Li, A.; Song, L.; Hu, Y.; Yeoh, G. H. Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Compos. Part B Eng. 2021, 224, 109174.

[53]

Cazón, P.; Vázquez, M.; Velazquez, G. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym. Test. 2018, 69, 536–544.

[54]

Tao, C. A.; Zhang, H.; Wang, F.; Zhu, H.; Zou, X. R.; Wang, J. F. Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polym. Polym. Compos. 2017, 25, 11–16.

[55]

Aslam, M.; Kalyar, M. A.; Raza, Z. A. Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polym. Bull. 2019, 76, 73–86.

[56]

Rao, X.; Ou, Z. Q.; Zhou, Q.; Fu, L. Y.; Gong, Y.; Wen, Q.; Du, X. Y.; Liang, C. Green cross-linked coir cellulose nanocrystals/poly (vinyl alcohol) composite films with enhanced water resistance, mechanical properties, and thermal stability. J. Appl. Polym. Sci. 2022, 139, 52361.

File
12274_2023_5594_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2023
Revised: 18 February 2023
Accepted: 19 February 2023
Published: 15 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

The authors are grateful for the support and funding from the National Natural Science Foundation of China (Nos. U21A2093 and 51973173), the Technological Base Scientific Research Projects (Highly Thermally Conductive Nonmetal Materials), the Fundamental Research Funds for the Central Universities, the Undergraduate Innovation & Business Program in Northwestern Polytechnical University (Nos. S202210699381 and S202210699172), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX2022073). This work was also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars. We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM, TEM, and XRD tests.

Return