Journal Home > Volume 16 , Issue 12

Although ultrablack surfaces are urgently needed in wide applications owing to their extremely low reflectance over a broadband wavelength, obtaining simultaneously the ultrablackness and mechanical robustness by simple process technique is still a great challenge. Herein, by decoupling different light extinction effects to different layers of coating, we design an ultrablack coating that is all-sprayable in whole process. This coating presents low reflectance over visible–mid-infrared (VIS–MIR) wavelength (av. R ≈ 1% in VIS), low multi-angle scattering (bidirectional reflection distribution function (BRDF) = 10−2–10−3 sr−1), together with good substrate adhesion grade and self-cleaning ability, which are superior to most reported sprayable ultrablack surfaces. The light extinction effects of each layer are discussed. This method is also applicable in other material systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design and optical performance investigation of all-sprayable ultrablack coating

Show Author's information Chen Shen1,2,§Huiyong Li1,3,§Shuai Sun1,2Hui Zhang1( )Lanqin Yan1Zhong Zhang1,4( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

§ Chen Shen and Huiyong Li contributed equally to this work.

Abstract

Although ultrablack surfaces are urgently needed in wide applications owing to their extremely low reflectance over a broadband wavelength, obtaining simultaneously the ultrablackness and mechanical robustness by simple process technique is still a great challenge. Herein, by decoupling different light extinction effects to different layers of coating, we design an ultrablack coating that is all-sprayable in whole process. This coating presents low reflectance over visible–mid-infrared (VIS–MIR) wavelength (av. R ≈ 1% in VIS), low multi-angle scattering (bidirectional reflection distribution function (BRDF) = 10−2–10−3 sr−1), together with good substrate adhesion grade and self-cleaning ability, which are superior to most reported sprayable ultrablack surfaces. The light extinction effects of each layer are discussed. This method is also applicable in other material systems.

Keywords: carbon nanomaterials, ultrablack, spray-coating, multiple scattering, intermediate layer

References(54)

[1]

Theocharous, E.; Chunnilall, C. J.; Mole, R.; Gibbs, D.; Fox, N.; Shang, N. G.; Howlett, G.; Jensen, B.; Taylor, R.; Reveles, J. R. et al. The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications. Opt. Express 2014, 22, 7290–7307.

[2]

Akutsu, T.; Saito, Y.; Sakakibara, Y.; Sato, Y.; Niwa, Y.; Kimura, N.; Suzuki, T.; Yamamoto, K.; Tokoku, C.; Koike, S. et al. Vacuum and cryogenic compatible black surface for large optical baffles in advanced gravitational-wave telescopes. Opt. Mater. Express 2016, 6, 1613–1626.

[3]

Lehman, J.; Theocharous, E.; Eppeldauer, G.; Pannell, C. Gold-black coatings for freestanding pyroelectric detectors. Meas. Sci. Technol. 2003, 14, 916–922.

[4]

Lehman, J.; Sanders, A.; Hanssen, L.; Wilthan, B.; Zeng, J. N.; Jensen, C. Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 2010, 10, 3261–3266.

[5]

Selvakumar, N.; Krupanidhi, S. B.; Barshilia, H. C. Carbon nanotube-based tandem absorber with tunable spectral selectivity: Transition from near-perfect blackbody absorber to solar selective absorber. Adv. Mater. 2014, 26, 2552–2557.

[6]

Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585–4591.

[7]

Tu, C.; Cai, W. F.; Chen, X.; Ouyang, X. L.; Zhang, H.; Zhang, Z. A 3D-structured sustainable solar-driven steam generator using super-black nylon flocking materials. Small 2019, 15, 1902070.

[8]

Wang, H. Q.; Zhang, C.; Ji, X. J.; Yang, J. M.; Zhang, Z. H.; Ma, Y.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Over 11 kg·m−2·h−1 evaporation rate achieved by cooling metal–organic framework foam with pine needle-like hierarchical structures to subambient temperature. ACS Appl. Mater. Interfaces 2022, 14, 10257–10266.

[9]

Meng, T. T.; Li, Z. T.; Wan, Z. M.; Zhang, J.; Wang, L. Z.; Shi, K. J.; Bu, X. T.; Alshehri, S. M.; Bando, Y.; Yamauchi, Y. et al. MOF-Derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction. Chem. Eng. J. 2023, 452, 139193.

[10]

Peng, L.; Liu, D. Q.; Cheng, H. F.; Zhou, S.; Zu, M. A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 2018, 6, 1801006.

[11]

Li, Y.; Bai, X.; Yang, T. Z.; Luo, H. L.; Qiu, C. W. Structured thermal surface for radiative camouflage. Nat. Commun. 2018, 9, 273.

[12]

Huang, Y. J.; Pu, M. B.; Zhao, Z. Y.; Li, X.; Ma, X. L.; Luo, X. G. Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 2018, 407, 204–207.

[13]

Wang, G.; Xing, F.; Wei, M. S.; You, Z. Rapid optimization method of the strong stray light elimination for extremely weak light signal detection. Opt. Express 2017, 25, 26175–26185.

[14]

Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047.

[15]

Yang, Z. P.; Hsieh, M. L.; Bur, J. A.; Ci, L. J.; Hanssen, L. M.; Wilthan, B.; Ajayan, P. M.; Lin, S. Y. Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array. Appl. Opt. 2011, 50, 1850–1855.

[16]

Tao, H. Y.; Lin, J. Q.; Hao, Z. Q.; Gao, X.; Song, X. W.; Sun, C. K.; Tan, X. Formation of strong light-trapping Nano- and microscale structures on a spherical metal surface by femtosecond laser filament. Appl. Phys. Lett. 2012, 100, 201111.

[17]

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

[18]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[19]

Wattoo, A. G.; Bagheri, R.; Ding, X. F.; Zheng, B. Z.; Liu, J. K.; Xu, C.; Yang, L. J.; Song, Z. L. Template free growth of robustly stable nanophotonic structures: Broadband light superabsorbers. J. Mater. Chem. C 2018, 6, 8646–8662.

[20]

Chen, Y. L.; Zhao, G. M.; Ren, L. P.; Yang, H. J.; Xiao, X. F.; Xu, W. L. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation. ACS Appl. Mater. Interfaces 2020, 12, 46653–46660.

[21]

Amemiya, K.; Koshikawa, H.; Imbe, M.; Yamaki, T.; Shitomi, H. Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management. J. Mater. Chem. C 2019, 7, 5418–5425.

[22]

Ci, L. J.; Vajtai, R.; Ajayan, P. M. Vertically aligned large-diameter double-walled carbon nanotube arrays having ultralow density. J. Phys. Chem. C 2007, 111, 9077–9080.

[23]

Brown, R. J. C.; Brewer, P. J.; Milton, M. J. T. The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces. J. Mater. Chem. 2002, 12, 2749–2754.

[24]

Lin, H.; Ouyang, M. Z.; Chen, B. X.; Zhu, Q. F.; Wu, J. S.; Lou, N.; Dong, L. T.; Wang, Z. B.; Fu, Y. G. Design and fabrication of moth-eye subwavelength structure with a waist on silicon for broadband and wide-angle anti-reflection property. Coatings 2018, 8, 360.

[25]

Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

[26]

Kanamori, Y.; Sasaki, M.; Hane, K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999, 24, 1422–1424.

[27]

Ng, C.; Yap, L. W.; Roberts, A.; Cheng, W. L.; Gómez, D. E. Black gold: Broadband, high absorption of visible light for photochemical systems. Adv. Funct. Mater. 2017, 27, 1604080.

[28]

Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M. Carbon nanotube-based black coatings. Appl. Phys. Rev. 2018, 5, 011103.

[29]

Gokhale, V. J.; Shenderova, O. A.; Mcguire, G. E.; Rais-Zadeh, M. Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 2013, 23, 191–197.

[30]

Wei, W. Y.; Li, M. W.; Han, Y.; Wu, M. J.; Yan, J.; Liu, M. J.; Chen, Y. L. Flexible and robust ultrablack elastomers with a dual-gradient design for broadband and efficient light management. Adv. Opt. Mater. 2022, 10, 2101854.

[31]

Jin, Y. H.; Zhang, T. F.; Zhao, J.; Zhao, Y. X.; Li, C.; Song, J.; Hao, X. P.; Wang, J. P.; Jiang, K. L.; Fan, S. S. et al. Spray coating of a perfect absorber based on carbon nanotube multiscale composites. Carbon 2021, 178, 616–624.

[32]

Wang, H. Q.; Du, A.; Ji, X. J.; Zhang, C.; Zhou, B.; Zhang, Z. H.; Shen, J. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation. ACS Appl. Mater. Interfaces 2019, 11, 42057–42065.

[33]

Li, H. M.; Chen, Y. F.; Wang, P. D.; Xu, B. S.; Ma, Y. B.; Wen, W. B.; Yang, Y. Z.; Fang, D. N. Porous carbon-bonded carbon fiber composites impregnated with SiO2–Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceram. Int. 2018, 44, 3484–3487.

[34]

Yu, Y. L.; Chen, S.; Jia, Y.; Qi, T.; Xiao, L.; Cui, X.; Zhuang, D. M.; Wei, J. Q. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification. Carbon 2020, 169, 134–141.

[35]

Wang, B. B.; Li, D. H.; Tang, M. W.; Ma, H. B.; Gui, Y. G.; Tian, X.; Quan, F. Y.; Song, X. Q.; Xia, Y. Z. Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloys Compd. 2018, 749, 517–522.

[36]

Sun, W.; Du, A.; Feng, Y.; Shen, J.; Huang, S. M.; Tang, J.; Zhou, B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 2016, 10, 9123–9128.

[37]

Wattoo, A. G.; Xu, C.; Yang, L. J.; Ni, C. L.; Yu, C.; Nie, X.; Yan, M. S.; Mao, S. D.; Song, Z. L. Design, fabrication and thermal stability of spectrally selective TiAlN/SiO2 tandem absorber. Sol. Energy 2016, 138, 1–9.

[38]

Tsao, S. H.; Wan, D. H.; Lai, Y. S.; Chang, H. M.; Yu, C. C.; Lin, K. T.; Chen, H. L. White-light-induced collective heating of gold nanocomposite/Bombyx mori silk thin films with ultrahigh broadband absorbance. ACS Nano 2015, 9, 12045–12059.

[39]

Hedayati, M. K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V. S. K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 2011, 23, 5410–5414.

[40]

Gittleson, F. S.; Hwang, D.; Ryu, W. H.; Hashmi, S. M.; Hwang, J.; Goh, T.; Taylor, A. D. Ultrathin nanotube/nanowire electrodes by spin-spray layer-by-layer assembly: A concept for transparent energy storage. ACS Nano 2015, 9, 10005–10017.

[41]

Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 2010, 65, 2000–2008.

[42]

Lin, S.; Wang, H. Y.; Zhang, X. N.; Wang, D.; Zu, D.; Song, J. N.; Liu, Z. L.; Huang, Y.; Huang, K.; Tao, N. et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 2019, 62, 111–116.

[43]

Mulay, M. R.; Chauhan, A.; Patel, S.; Balakrishnan, V.; Halder, A.; Vaish, R. Candle soot: Journey from a pollutant to a functional material. Carbon 2019, 144, 684–712.

[44]

Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.

[45]

Torres, J. F.; Tsuda, K.; Murakami, Y.; Guo, Y. F.; Hosseini, S.; Asselineau, C. A.; Taheri, M.; Drewes, K.; Tricoli, A.; Lipiński, W. et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals. Energy Environ. Sci. 2022, 15, 1893–1906.

[46]

Leloup, F. B.; Forment, S.; Dutré, P.; Pointer, M. R.; Hanselaer, P. Design of an instrument for measuring the spectral bidirectional scatter distribution function. Appl. Opt. 2008, 47, 5454–5467.

[47]

Zheng, Z. R.; Zhou, J.; Gu, P. F. Roughness characterization of well-polished surfaces by measurements of light scattering distribution. Opt. Appl. 2010, 40, 811–818.

[48]
Balling, B. A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard. Ohio: Department of Engineering Physics, Air Force Institute of Technology, 2009.
[49]

Zhang, X. N.; Qiu, J.; Li, X. C.; Zhao, J. M.; Liu, L. H. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337–2344.

[50]

Hozumi, A.; Takai, O. Effect of hydrolysis groups in fluoro-alkyl silanes on water repellency of transparent two-layer hard-coatings. Appl. Surf. Sci. 1996, 103, 431–441.

[51]

Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 1984, 23, 1980–1985.

[52]

Guan, C.; Lü, C. L.; Liu, Y. F.; Yang, B. Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J. Appl. Polym. Sci. 2006, 102, 1631–1636.

[53]

Guo, J.; Li, D. D.; Zhao, H.; Zou, W. Z.; Yang, Z. S.; Qian, Z. C.; Yang, S. J.; Yang, M.; Zhao, N.; Xu, J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Appl. Mater. Interfaces 2019, 11, 15945–15951.

[54]

Guo, J.; Li, D. D.; Qian, Z. C.; Luo, H.; Yang, M.; Wang, Q. X.; Xu, J.; Zhao, N. Carbon vesicles: A symmetry-breaking strategy for wide-band and solvent-processable ultrablack coating materials. Adv. Funct. Mater. 2020, 30, 1909877.

Video
12274_2023_5590_MOESM2_ESM.mp4
12274_2023_5590_MOESM3_ESM.mp4
12274_2023_5590_MOESM4_ESM.mp4
File
12274_2023_5590_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2022
Revised: 15 February 2023
Accepted: 19 February 2023
Published: 22 March 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Nos. 11832010, 11890682 and 21721002), the National Key Basic Research Program of China (No. 2018YFA0208403), and the Austrian-Chinese Cooperative Research and Development Projects (No. GJHZ2043), Chinese Academy of Sciences.

Return