Journal Home > Volume 16 , Issue 7

Perovskite quantum dots (PeQDs) endowed with capping ligands exhibit impressive optoelectronic properties and enable for cost-efficient solution processing and exciting application opportunities. We synthesize and characterize three different PeQDs with the same cubic CsPbBr3 core, but which are distinguished by the ligand composition and density. PeQD-1 features a binary didodecyldimethylammonium bromide (DDAB) and octanoic acid capping ligand system, with a high surface density of 1.53 nm−2, whereas PeQD-2 and PeQD-3 are coated by solely DDAB at a gradually lower surface density. We show that PeQD-1 endowed with highest ligand density features the highest dispersibility in toluene of 150 g/L, the highest photoluminescence quantum yield of 95% in dilute solution and 59% in a neat film, and the largest core-to-core spacing in neat thin films. We further establish that ions are released from the core of PeQD-1 when it is exposed to an electric field, although it comprises a dense coating of one capping ligand per four surface core atoms. We finally exploit these combined findings to the development of a light-emitting electrochemical cell (LEC), where the active layer is composed solely of solution-processed pure PeQDs, without additional electrolytes. In this device, the ion release is utilized as an advantage for the electrochemical doping process and efficient emissive operation of the LEC.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The influence of the capping ligands on the optoelectronic performance, morphology, and ion liberation of CsPbBr3 perovskite quantum dots

Show Author's information Yongfeng Liu1,2,4( )Shi Tang2,3Zhaoju Gao1Xiuwen Shao1Xiaolin Zhu1Joan Ràfols Ribé2Thomas Wågberg2Ludvig Edman2,3( )Jia Wang2( )
College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
Department of Physics, Umeå University, Umeå SE-90187, Sweden
LunaLEC AB, Umeå SE-90187, Sweden
Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China

Abstract

Perovskite quantum dots (PeQDs) endowed with capping ligands exhibit impressive optoelectronic properties and enable for cost-efficient solution processing and exciting application opportunities. We synthesize and characterize three different PeQDs with the same cubic CsPbBr3 core, but which are distinguished by the ligand composition and density. PeQD-1 features a binary didodecyldimethylammonium bromide (DDAB) and octanoic acid capping ligand system, with a high surface density of 1.53 nm−2, whereas PeQD-2 and PeQD-3 are coated by solely DDAB at a gradually lower surface density. We show that PeQD-1 endowed with highest ligand density features the highest dispersibility in toluene of 150 g/L, the highest photoluminescence quantum yield of 95% in dilute solution and 59% in a neat film, and the largest core-to-core spacing in neat thin films. We further establish that ions are released from the core of PeQD-1 when it is exposed to an electric field, although it comprises a dense coating of one capping ligand per four surface core atoms. We finally exploit these combined findings to the development of a light-emitting electrochemical cell (LEC), where the active layer is composed solely of solution-processed pure PeQDs, without additional electrolytes. In this device, the ion release is utilized as an advantage for the electrochemical doping process and efficient emissive operation of the LEC.

Keywords: CsPbBr3 quantum dots, light-emitting electrochemical cell, capping ligand, ion liberation

References(64)

[1]

Mei, X. Y.; Jia, D. L.; Chen, J. X.; Zheng, S. Y.; Zhang, X. L. Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 2022, 43, 101449.

[2]

Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

[3]

Liu, L.; Najar, A.; Wang, K.; Du, M. Y.; Liu, S. Z. Perovskite quantum dots in solar cells. Adv. Sci. 2022, 9, 2104577.

[4]

Nannen, E.; Frohleiks, J.; Gellner, S. Light-emitting electrochemical cells based on color-tunable inorganic colloidal quantum dots. Adv. Funct. Mater. 2020, 30, 1907349.

[5]

Tang, X. S.; Hu, Z. P.; Chen, W. W.; Xing, X.; Zang, Z. G.; Hu, W.; Qiu, J.; Du, J.; Leng, Y. X.; Jiang, X. F. et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462–468.

[6]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[7]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[8]

Wei, C. T.; Su, W. M.; Li, J. T.; Xu, B.; Shan, Q. S.; Wu, Y.; Zhang, F. J.; Luo, M. M.; Xiang, H. Y.; Cui, Z. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2107798.

[9]

Li, X. W.; Ma, W.; Liang, D. H.; Cai, W. S.; Zhao, S. Y.; Zang, Z. G. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2022, 2, 646–654.

[10]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[11]

Fu, S.; Li, X. D.; Wan, L.; Zhang, W. X.; Song, W. J.; Fang, J. F. Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 2020, 12, 170.

[12]

Yang, J.; Kang, W.; Liu, Z. Z.; Pi, M. Y.; Luo, L. B.; Li, C.; Lin, H.; Luo, Z. T.; Du, J.; Zhou, M. et al. High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability. J. Phys. Chem. Lett. 2020, 11, 6880–6886.

[13]

Li, C. L.; Zang, Z. G.; Han, C.; Hu, Z. P.; Tang, X. S.; Du, J.; Leng, Y. X.; Sun, K. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 2017, 40, 195–202.

[14]

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

[15]

Song, J. Z.; Fang, T.; Li, J. H.; Xu, L. M.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 2018, 30, 1805409.

[16]

Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

[17]

Dong, Y. T.; Wang, Y. K.; Yuan, F. L.; Johnston, A.; Liu, Y.; Ma, D. X.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 2020, 15, 668–674.

[18]

Wang, Y. K.; Yuan, F. L.; Dong, Y. T.; Li, J. Y.; Johnston, A.; Chen, B.; Saidaminov, M. I.; Zhou, C.; Zheng, X. P.; Hou, Y. et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem., Int. Ed. 2021, 60, 16164–16170.

[19]

Lu, M.; Guo, J.; Sun, S. Q.; Lu, P.; Wu, J. L.; Wang, Y.; Kershaw, S. V.; Yu, W. W.; Rogach, A. L.; Zhang, Y. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 2020, 20, 2829–2836.

[20]

Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D. H.; Park, J.; Lee, S. C.; Park, S. H. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694.

[21]

Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.

[22]

Liu, Z.; Qiu, W. D.; Peng, X. M.; Sun, G. W.; Liu, X. Y.; Liu, D. H.; Li, Z. C.; He, F. R.; Shen, C. Y.; Gu, Q. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.

[23]

Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

[24]

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

[25]

de Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[26]

Yan, D. D.; Zhao, S. Y.; Zhang, Y. B.; Wang, H. X.; Zang, Z. G. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron. Adv. 2022, 5, 200075.

[27]

Wang, H. Y.; Chen, Z.; Hu, J. C.; Yu, H. L.; Kuang, C. Y.; Qin, J. J.; Liu, X. J.; Lu, Y.; Fahlman, M.; Hou, L. T. et al. Dynamic redistribution of mobile ions in perovskite light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2007596.

[28]

Zhang, H. M.; Lin, H.; Liang, C. J.; Liu, H.; Liang, J. L.; Zhao, Y.; Zhang, W. H.; Sun, M. J.; Xiao, W. K.; Li, H. et al. Organic–inorganic perovskite light-emitting electrochemical cells with a large capacitance. Adv. Funct. Mater. 2015, 25, 7226–7232.

[29]

Puscher, B. M. D.; Aygüler, M. F.; Docampo, P.; Costa, R. D. Unveiling the dynamic processes in hybrid lead bromide perovskite nanoparticle thin film devices. Adv. Energy Mater. 2017, 7, 1602283.

[30]

Sakhatskyi, K.; John, R. A.; Guerrero, A.; Tsarev, S.; Sabisch, S.; Das, T.; Matt, G. J.; Yakunin, S.; Cherniukh, I.; Kotyrba, M. et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 2022, 7, 3401–3414.

[31]

Kong, L. M.; Zhang, X. Y.; Zhang, C. X.; Wang, L.; Wang, S.; Cao, F.; Zhao, D. W.; Rogach, A. L.; Yang, X. Y. Stability of perovskite light-emitting diodes: existing issues and mitigation strategies related to both material and device aspects. Adv. Mater. 2022, 34, 2205217.

[32]

Liu, Y. F.; Tang, S.; Fan, J. P.; Gracia-Espino, E.; Yang, J. P.; Liu, X. J.; Kera, S.; Fahlman, M.; Larsen, C.; Wågberg, T. et al. Highly soluble CsPbBr3 perovskite quantum dots for solution-processed light-emission devices. ACS Appl. Nano Mater. 2021, 4, 1162–1174.

[33]
Sigma-Aldrich. IR spectrum table & chart. 2021.
[34]

Imran, M.; Ijaz, P.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Prato, M.; Almeida, G.; Infante, I.; Manna, L. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Lett. 2019, 4, 819–824.

[35]

Chen, K. Q.; Zhong, Q. H.; Chen, W.; Sang, B. H.; Wang, Y. W.; Yang, T. Q.; Liu, Y. L.; Zhang, Y. P.; Zhang, H. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900991.

[36]

Almeida, G.; Ashton, O. J.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Mishra, N.; Akkerman, Q. A.; Infante, I.; Snaith, H. J.; Manna, L. The phosphine oxide route toward lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 14878–14886.

[37]

Chen, W. W.; Tang, X. S.; Wangyang, P. H.; Yao, Z. Q.; Zhou, D.; Chen, F. G.; Li, S. Q.; Lin, H.; Zeng, F. J.; Wu, D. F. et al. Surface-passivated cesium lead halide perovskite quantum dots: toward efficient light-emitting diodes with an inverted sandwich structure. Adv. Opt. Mater. 2018, 6, 1800007.

[38]

Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060.

[39]

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

[40]

Nie, B. N.; Stutzman, J.; Xie, A. H. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 2005, 88, 2833–2847.

[41]

Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

[42]

Li, G. P.; Huang, J. S.; Zhu, H. W.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 2018, 30, 6099–6107.

[43]

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646.

[44]

Zhang, L. X.; Sun, X. P.; Song, Y. H.; Jiang, X. E.; Dong, S. J.; Wang, E. K. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly. Langmuir 2006, 22, 2838–2843.

[45]

Liu, F.; Ding, C.; Zhang, Y. H.; Ripolles, T. S.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S. Y. et al. Colloidal synthesis of air-stable alloyed CsSn1−xPbxI3 perovskite nanocrystals for use in solar cells. J. Am. Chem. Soc. 2017, 139, 16708–16719.

[46]

Benoit, D. N.; Zhu, H. G.; Lilierose, M. H.; Verm, R. A.; Ali, N.; Morrison, A. N.; Fortner, J. D.; Avendano, C.; Colvin, V. L. Measuring the grafting density of nanoparticles in solution by analytical ultracentrifugation and total organic carbon analysis. Anal. Chem. 2012, 84, 9238–9245.

[47]

Di Stasio, F.; Imran, M.; Akkerman, Q. A.; Prato, M.; Manna, L.; Krahne, R. Reversible concentration-dependent photoluminescence quenching and change of emission color in CsPbBr3 nanowires and nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 2725–2729.

[48]

Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.

[49]

Yang, D. D.; Li, X. M.; Wu, Y.; Wei, C. T.; Qin, Z. Y.; Zhang, C. F.; Sun, Z. G.; Li, Y. L.; Wang, Y.; Zeng, H. B. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 2019, 7, 1900276.

[50]

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

[51]

Liang, Z. Q.; Zhao, S. L.; Xu, Z.; Qiao, B.; Song, P. J.; Gao, D.; Xu, X. R. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 2016, 8, 28824–28830.

[52]

Liu, Y. F.; Tang, X. S.; Zhu, T.; Deng, M.; Ikechukwu, I. P.; Huang, W.; Yin, G. L.; Bai, Y. Z.; Qu, D. R.; Huang, X. B. et al. All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection. J. Mater. Chem. C 2018, 6, 4793–4799.

[53]

Zhang, T. K.; Wang, F.; Kim, H. B.; Choi, I. W.; Wang, C. F.; Cho, E.; Konefal, R.; Puttisong, Y.; Terado, K.; Kobera, L. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 2022, 377, 495–501.

[54]

Arivazhagan, G.; Shanmugam, R.; Thenappan, T. Dielectric, FT-IR and UV–vis spectroscopic studies on the fluid structure of diisopropyl ether-caprylic acid mixture. J. Mol. Struct. 2011, 990, 276–280.

[55]

Chowdhury, M. P.; Kundu, K.; Bardhan, S.; Kar, B.; Chakraborty, G.; Saha, S. K. Experimental and theoretical efforts to identify the microstructural transition of water to acetonitrile-based reverse micelle through binary compositions of polar solvents. ChemistrySelect 2017, 2, 9760–9771.

[56]

Tang, S.; Edman, L. Light-emitting electrochemical cells: a review on recent progress. Top. Curr. Chem. 2016, 374, 40.

[57]

Bowler, M. H.; Mishra, A.; Adams, A. C.; Blangy, C. L. D.; Slinker, J. D. Circumventing dedicated electrolytes in light-emitting electrochemical cells. Adv. Funct. Mater. 2020, 30, 1906715.

[58]

Matyba, P.; Maturova, K.; Kemerink, M.; Robinson, N. D.; Edman, L. The dynamic organic p–n junction. Nat. Mater. 2009, 8, 672–676.

[59]

Tang, S.; Sandström, A.; Lundberg, P.; Lanz, T.; Larsen, C.; van Reenen, S.; Kemerink, M.; Edman, L. Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency. Nat. Commun. 2017, 8, 1190.

[60]

Tang, S.; Lundberg, P.; Tsuchiya, Y.; Ràfols-Ribé, J.; Liu, Y. F.; Wang, J.; Adachi, C.; Edman, L. Efficient and bright blue thermally activated delayed fluorescence from light-emitting electrochemical cells. Adv. Funct. Mater. 2022, 32, 2205967.

[61]

Liu, Y. F.; Tang, S.; Wu, X. Y.; Boulanger, N.; Gracia-Espino, E.; Wågberg, T.; Edman, L.; Wang, J. Carbon nanodots: A metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells. Nano Res. 2022, 15, 5610–5618.

[62]

Cheng, T.; Tumen-Ulzii, G.; Klotz, D.; Watanabe, S.; Matsushima, T.; Adachi, C. Ion migration-induced degradation and efficiency roll-off in quasi-2D perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 33004–33013.

[63]

Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497.

[64]

Andričević, P.; Mettan, X.; Kollár, M.; Náfrádi, B.; Sienkiewicz, A.; Garma, T.; Rossi, L.; Forró, L.; Horváth, E. Light-emitting electrochemical cells of single crystal hybrid halide perovskite with vertically aligned carbon nanotubes contacts. ACS Photonics 2019, 6, 967–975.

File
12274_2023_5589_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 December 2022
Revised: 07 February 2023
Accepted: 18 February 2023
Published: 19 April 2023
Issue date: July 2023

Copyright

© The author(s) 2023

Acknowledgements

Acknowledgements

The authors acknowledge generous support from J. C. Kempes Minnes Stipendiefond (No. SMK-1849.1, 21-0015), the Swedish Energy Agency (Nos. 45419-1, 46523-1, and 50779-1), the Swedish Research Council (Nos. 2018-03937, 2019-02345, and 2020-04437), the Swedish Foundation for Strategic Research, Stiftelsen Olle Engkvist Byggmästare (Nos. 186-0637 and 193-0578), Bertil & Britt Svenssons stiftelse för belysningsteknik, the Swedish Foundation for International Cooperation in Research, Higher Education via an Initiation Grant for Internationalization (No. 2019-8553), Innovation Technology Platform Project Jointly Built by Yangzhou City and Yangzhou University, China (No. YZ2020268), and Jiangsu Students’ Innovation and Entrepreneurship Training Program (No. 202211117040Z). We gratefully acknowledge Cheng Choo L. for SEM, energy dispersive spectroscopy, and TEM characterization and helpful discussion, Andras G. for FTIR measurement, Andrey S. for the XPS measurement, and Roushdey S. for assistance with the XRD measurement.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return