AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Versatile memristor implemented in van der Waals CuInP2S6

Yiqun LiuYonghuang WuBolun WangHetian ChenDi YiKai LiuCe-Wen NanJing Ma( )
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Volatile and non-volatile functions can be realized simultaneously in Ag/CIPS/Au (CIPS: CuInP2S6) memristor by regulating compliance currents. Such versatile memristor with excellent performances is expected to be used as selectors and memories in advanced data processing and demonstrates its possible applications in neuromorphic computing.

Abstract

Memristors are playing an increasingly important role in developing in-memory computing. Versatile memristors which offer both volatile and non-volatile performances can be employed as both memories and selectors, displaying unique advantages for developing novel electronic circuits. Herein, the remarkable multifunctional memristor with switchable operating modes between volatile and non-volatile by regulating compliance currents is implemented in Ag/CIPS/Au (CIPS: CuInP2S6) device. Diode-like volatile memristor performances with the rectification ratio of 103 and an endurance of 500 switching cycles were obtained. Meanwhile, significant non-volatile memory performances with on/off ratio of 103 and retention up to 104 s were also developed, which enables it to be utilized as selectors and memories simultaneously. Moreover, such versatile memristor can emulate the short-term plasticity (STP) and long-term plasticity (LTP) of artificial synapse, demonstrating its advantages in neuromorphic computing applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5583_MOESM1_ESM.pdf (734.6 KB)

References

[1]

Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544.

[2]

Cheng, C. D.; Tiw, P. J.; Cai, Y. M.; Yan, X. Q.; Yang, Y. C.; Huang, R. In-memory computing with emerging nonvolatile memory devices. Scie. China Inf. Sci. 2021, 64, 221402.

[3]

Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

[4]

Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

[5]

Wang, W.; Covi, E.; Lin, Y. H.; Ambrosi, E.; Milozzi, A.; Sbandati, C.; Farronato, M.; Ielmini, D. Switching dynamics of ag-based filamentary volatile resistive switching devices-part II: Mechanism and modeling. IEEE Trans. Electron Devices 2021, 68, 4342–4349.

[6]

Lee, M. J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y. B.; Kim, C. J.; Seo, D. H.; Seo, S. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630.

[7]

Zhu, J. D.; Zhang, T.; Yang, Y. C.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.

[8]

Burr, G. W.; Shelby, R. M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A. et al. Neuromorphic computing using non-volatile memory. Adv. Phys.: X 2017, 2, 89–124.

[9]

Lu, X. F.; Zhang, Y. S.; Wang, N. Z.; Luo, S.; Peng, K. L.; Wang, L.; Chen, H.; Gao, W. B.; Chen, X. H.; Bao, Y. et al. Exploring low power and ultrafast memristor on p-type van der waals SnS. Nano Lett. 2021, 21, 8800–8807.

[10]

Wu, L.; Liu, H. X.; Lin, J. F.; Wang, S. L. Volatile and nonvolatile memory operations implemented in a Pt/HfO2/Ti memristor. IEEE Trans. Electron Devices 2021, 68, 1622–1626.

[11]

Wang, R. P.; Yang, J. Q.; Mao, J. Y.; Wang, Z. P.; Wu, S.; Zhou, M. J.; Chen, T. Y.; Zhou, Y.; Han, S. T. Recent advances of volatile memristors: Devices, mechanisms, and applications. Adv. Intell. Syst. 2020, 2, 2000055.

[12]

Li, Y. T.; Yuan, P.; Fu, L. P.; Li, R. R.; Gao, X. P.; Tao, C. L. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 2015, 26, 391001.

[13]

Chen, W.; Barnaby, H. J.; Kozicki, M. N. Volatile and non-volatile switching in Cu-SiO2 programmable metallization cells. IEEE Electron Device Lett. 2016, 37, 580–583.

[14]

Du, G.; Li, H. X.; Mao, Q. N.; Ji, Z. G. Controllable volatile to nonvolatile resistive switching conversion and conductive filaments engineering in Cu/ZrO2/Pt devices. J. Phys. D:Appl. Phys. 2016, 49, 445105.

[15]

Abbas, H.; Ali, A.; Jung, J.; Hu, Q. L.; Park, M. R.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices. Appl. Phys. Lett. 2019, 114, 093503.

[16]

Abbas, H.; Abbas, Y.; Hassan, G.; Sokolov, A. S.; Jeon, Y. R.; Ku, B.; Kang, C. J.; Choi, C. The coexistence of threshold and memory switching characteristics of ALD HfO2 memristor synaptic arrays for energy-efficient neuromorphic computing. Nanoscale 2020, 12, 14120–14134.

[17]

Guo, T.; Pan, K. Q.; Jiao, Y. X.; Sun, B.; Du, C.; Mills, J. P.; Chen, Z. L.; Zhao, X. Y.; Wei, L.; Zhou, Y. N. et al. Versatile memristor for memory and neuromorphic computing. Nanoscale Horiz. 2022, 7, 299–310.

[18]

Yoon, S. J.; Ryu, J. H.; Ismail, M.; Chen, Y. C.; Chang, Y. F.; Yun, M. J.; Kim, H. D.; Kim, S. Compliance current and temperature effects on non-volatile memory switching and volatile switching dynamics in a Cu/SiOx/p++-Si device. Appl. Phys. Lett. 2019, 115, 212102.

[19]

Cao, G.; Gao, C.; Wang, J. J.; Lan, J. L.; Yan, X. B. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Res. 2022, 15, 8419–8427.

[20]

Lv, S. Y.; Liu, J.; Geng, Z. X. Application of memristors in hardware security: A current state-of-the-art technology. Adv. Intell. Syst. 2021, 3, 2000127.

[21]

Li, Y.; Long, S. B.; Liu, Q.; Lv, H. B.; Liu, M. Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 2017, 13, 1604306.

[22]

Zhang, L.; Gong, T.; Wang, H. D.; Guo, Z. N.; Zhang, H. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 2019, 11, 12413–12435.

[23]

Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

[24]

Belianinov, A.; He, Q.; Dziaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A.; Morozovska, A.; Banys, J.; Vysochanskii, Y.; Kalinin, S. V. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 2015, 15, 3808–3814.

[25]

Niu, L.; Liu, F. C.; Zeng, Q. S.; Zhu, X. Y.; Wang, Y. L.; Yu, P.; Shi, J.; Lin, J. H.; Zhou, J. D.; Fu, Q. D. et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 2019, 58, 596–603.

[26]

Jiang, X. X.; Hu, X. B.; Bian, J. H.; Zhang, K.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Ferroelectric field-effect transistors based on WSe2/CuInP2S6 heterostructures for memory applications. ACS Appl. Electron. Mater. 2021, 3, 4711–4717.

[27]

Wu, J. B.; Chen, H. Y.; Yang, N.; Cao, J.; Yan, X. D.; Liu, F. X.; Sun, Q. B.; Ling, X.; Guo, J.; Wang, H. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 2020, 3, 466–472.

[28]

Wang, X. W.; Zhu, C.; Deng, Y.; Duan, R. H.; Chen, J. Q.; Zeng, Q. S.; Zhou, J. D.; Fu, Q. D.; You, L.; Liu, S. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 2021, 12, 1109.

[29]

Baek, S.; Yoo, H. H.; Ju, J. H.; Sriboriboon, P.; Singh, P.; Niu, J. J.; Park, J. H.; Shin, C.; Kim, Y.; Lee, S. Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 2022, 9, 2200566.

[30]

Brehm, J. A.; Neumayer, S. M.; Tao, L.; O'Hara, A.; Chyasnavichus, M.; Susner, M. A.; McGuire, M. A.; Kalinin, S. V.; Jesse, S.; Ganesh, P. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48.

[31]

Zhang, D. W.; Luo, Z. D.; Yao, Y.; Schoenherr, P.; Sha, C. H.; Pan, Y.; Sharma, P.; Alexe, M.; Seidel, J. Anisotropic ion migration and electronic conduction in van der waals ferroelectric CuInP2S6. Nano Lett. 2021, 21, 995–1002.

[32]

Yang, S. M.; Morozovska, A. N.; Kumar, R.; Eliseev, E. A.; Cao, Y.; Mazet, L.; Balke, N.; Jesse, S.; Vasudevan, R. K.; Dubourdieu, C. et al. Mixed electrochemical-ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 2017, 13, 812–818.

[33]

Morozovska, A. N.; Eliseev, E. A.; Morozovsky, N. V.; Kalinin, S. V. Ferroionic states in ferroelectric thin films. Phys. Rev. B 2017, 95, 195413.

[34]

Neumayer, S. M.; Si, M. W.; Li, J. K.; Liao, P. Y.; Tao, L.; O'Hara, A.; Pantelides, S. T.; Ye, P. D.; Maksymovych, P.; Balke, N. Ionic control over ferroelectricity in 2D layered van der waals capacitors. ACS Appl. Mater. Interfaces 2022, 14, 3018–3026.

[35]

Li, B. C.; Li, S. F.; Wang, H.; Chen, L.; Liu, L.; Feng, X. W.; Li, Y. S.; Chen, J. S.; Gong, X.; Ang, K. W. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 2020, 6, 2000760.

[36]

Chen, J. G.; Zhu, C.; Cao, G. M.; Liu, H. S.; Bian, R. J.; Wang, J. Y.; Li, C. C.; Chen, J. Q.; Fu, Q. D.; Liu, Q. et al. Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater. 2022, 34, 2104676.

[37]

Singh, P.; Baek, S.; Yoo, H. H.; Niu, J. J.; Park, J. H.; Lee, S. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications. ACS Nano 2022, 16, 5418–5426.

[38]

Munjal, S.; Khare, N. Compliance current controlled volatile and nonvolatile memory in Ag/CoFe2O4/Pt resistive switching device. Nanotechnology 2021, 32, 185204.

[39]

Wang, Z. R.; Rao, M. Y.; Midya, R.; Joshi, S.; Jiang, H.; Lin, P.; Song, W. H.; Asapu, S.; Zhuo, Y.; Li, C. et al. Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications. Adv. Funct. Mater. 2018, 28, 1704862.

[40]

Covi, E.; Wang, W.; Lin, Y. H.; Farronato, M.; Ambrosi, E.; Ielmini, D. Switching dynamics of Ag-based filamentary volatile resistive switching devices-part I: Experimental characterization. IEEE Trans. Electron Devices 2021, 68, 4335–4341.

[41]

Midya, R.; Wang, Z. R.; Zhang, J. M.; Savel'ev, S. E.; Li, C.; Rao, M. Y.; Jang, M. H.; Joshi, S.; Jiang, H.; Lin, P. et al. Anatomy of Ag/hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 2017, 29, 1604457.

[42]

Song, J.; Woo, J.; Prakash, A.; Lee, D.; Hwang, H. Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron Device Lett. 2015, 36, 681–683.

[43]

Jiang, X. A.; Wang, X. Y.; Wang, X. L.; Zhang, X. P.; Niu, R. R.; Deng, J. M.; Xu, S.; Lun, Y. Z.; Liu, Y. Y.; Xia, T. L. et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 2022, 13, 574.

[44]

Woo, J.; Lee, D.; Cha, E.; Lee, S.; Park, S.; Hwang, H. Control of Cu conductive filament in complementary atom switch for cross-point selector device application. IEEE Electron Device Lett. 2014, 35, 60–62.

[45]

Ma, C.; Luo, Z.; Huang, W. C.; Zhao, L. T.; Chen, Q. L.; Lin, Y.; Liu, X.; Chen, Z. W.; Liu, C. C.; Sun, H. Y. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439.

[46]

Zhu, Y. X.; Zhu, Y.; Mao, H. W.; He, Y. L.; Jiang, S. S.; Zhu, L.; Chen, C. S.; Wan, C. J.; Wan, Q. Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D:Appl. Phys. 2022, 55, 053002.

[47]

Bian, J. H.; Cao, Z. Y.; Zhou, P. Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 2021, 8, 041313.

[48]

Huang, W.; Xia, X. W.; Zhu, C.; Steichen, P.; Quan, W. D.; Mao, W. W.; Yang, J. P.; Chu, L.; Li, X. A. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 2021, 13, 85.

[49]

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

[50]

Cooper, L. N.; Bear, M. F. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat. Rev. Neurosci. 2012, 13, 798–810.

Nano Research
Pages 10191-10197
Cite this article:
Liu Y, Wu Y, Wang B, et al. Versatile memristor implemented in van der Waals CuInP2S6. Nano Research, 2023, 16(7): 10191-10197. https://doi.org/10.1007/s12274-023-5583-4
Topics:

1144

Views

20

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 05 December 2022
Revised: 04 February 2023
Accepted: 15 February 2023
Published: 31 March 2023
© Tsinghua University Press 2023
Return