AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal

Kunfeng Zhang1,2Hongxia Chen2Wenbo Pei3Hongxing Dai3Junshan Li4Yongfa Zhu1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Show Author Information

Graphical Abstract

Three-dimensionally ordered macroporous (3DOM) Bi4O5Br2-255 exhibits excellent photocatalytic performance for phenol removal, which is attributed to strong phenol adsorption, O2 activation ability, and fast charge separation and transfer efficiency.

Abstract

Herein, a series of three-dimensionally ordered macroporous (3DOM) Bi4O5Br2 photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate (PMMA) template method. The photocatalytic activity for phenol degradation over 3DOM Bi4O5Br2 first increased and then decreased with the rise in macropore size. Specifically, 3DOM Bi4O5Br2-255 (macropore diameter ca. 170 nm) exhibits the best photocatalytic activity in the static system, which is about 4.5, 7.3, and 11.9 times higher than those of bulk Bi4O5Br2, Bi2WO6, and g-C3N4, respectively. Meanwhile, high phenol conversion (75%) is also obtained over 3DOM Bi4O5Br2-255 in the flow system under full spectrum irradiation. Furthermore, 3DOM Bi4O5Br2-255 also shows strong mineralization capacity owing to the downward shift of valance band position (0.15 V) as compared with Bi4O5Br2. Total organic carbon (TOC) removal rate over 3DOM Bi4O5Br2-255 (62%) is much higher than that of Bi4O5Br2 (17%). The enhancement in photocatalytic performance of 3DOM Bi4O5Br2-255 is attributable to its better phenol adsorption, O2 activation, and charge separation and transfer abilities. This work combines the advantages of 3D structure and surface dangling bonds, providing new possibilities for designing highly efficient photocatalysts for pollutants removal.

Electronic Supplementary Material

Download File(s)
12274_2023_5582_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

[2]

Qu, Y. Q.; Duan, X. F. Progress, challenge, and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

[3]

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

[4]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[5]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[6]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[7]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[8]

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

[9]

Dong, H. R.; Zeng, G. M.; Tang, L.; Fan, C. Z.; Zhang, C.; He, X. X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146.

[10]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[11]

Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale 2014, 6, 167–171.

[12]

Li, R.; Xie, F. X.; Liu, J. X.; Wang, Y. W.; Wang, Y. F.; Zhang, X. C.; Fan, C. M. Synthesis of Bi4O5Br2 from reorganization of BiOBr and its excellent visible light photocatalytic activity. Dalton Trans. 2016, 45, 9182–9186.

[13]

Ji, M. X.; Di, J.; Liu, Y. L.; Chen, R.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Confined active species and effective charge separation in Bi4O5I2 ultrathin hollow nanotube with increased photocatalytic activity. Appl. Catal. B: Environ. 2020, 268, 118403.

[14]

Mao, D. J.; Yuan, J. L.; Qu, X. L.; Sun, C.; Yang, S. G.; He, H. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {001}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants. J. Catal. 2019, 369, 209–221.

[15]

Xiong, J.; Song, P.; Di, J.; Li, H. M. Bismuth-rich bismuth oxyhalides: A new opportunity to trigger high-efficiency photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454.

[16]

Jin, X. L.; Ye, L. Q.; Xie, H. Q.; Chen, G. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101.

[17]

Di, J.; Xia, J. X.; Ji, M. X.; Yin, S.; Li, H. P.; Xu, H.; Zhang, Q.; Li, H. M. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J. Mater. Chem. A 2015, 3, 15108–15118.

[18]

Dong, X. A.; Cui, Z. H.; Shi, X.; Yan, P.; Wang, Z. M.; Co, A. C.; Dong, F. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew. Chem., Int. Ed. 2022, 61, e202200937.

[19]

Li, N.; Zhu, G. Q.; Hojamberdiev, M.; Zhu, R. L.; Chang, J.; Gao, J. Z.; Guo, Q. M.; Liu, P. Pd nanoparticle-decorated Bi4O5Br2 nanosheets with enhanced visible-light photocatalytic activity for degradation of bisphenol A. J. Photochem. Photobiol. A: Chem. 2018, 356, 440–450.

[20]

Wang, H. Y.; Zhou, Y.; Wang, J. N.; Li, A. M.; Corvini, P. F. X. BiOBr/Bi4O5Br2/PDI constructed for visible-light degradation of endocrine disrupting chemicals: Synergistic effects of bi-heterojunction and oxygen evolution. Chem. Eng. J. 2022, 433, 133622.

[21]

Zhu, G. Q.; Hojamberdiev, M.; Zhang, W. B.; Taj Ud Din, S.; Kim, Y. J.; Lee, J.; Yang, W. Enhanced photocatalytic activity of Fe-doped Bi4O5Br2 nanosheets decorated with Au nanoparticles for pollutants removal. Appl. Surf. Sci. 2020, 526, 146760.

[22]

Xiong, J.; Song, P.; Di, J.; Li, H. M.; Liu, Z. Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. J. Mater. Chem. A 2019, 7, 25203–25226.

[23]

Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

[24]

Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

[25]

Jin, X. L.; Lv, C. D.; Zhou, X.; Xie, H. Q.; Sun, S. F.; Liu, Y.; Meng, Q. Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955.

[26]

Mao, D. J.; Ding, S. S.; Meng, L. J.; Dai, Y. X.; Sun, C.; Yang, S. G.; He, H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal. B: Environ. 2017, 207, 153–165.

[27]

Zhao, W.; Yang, C. X.; Huang, J. D.; Jin, X. L.; Deng, Y.; Wang, L.; Su, F. Y.; Xie, H. Q.; Wong, P. K.; Ye, L. Q. Selective aerobic oxidation of sulfides to sulfoxides in water under blue light irradiation over Bi4O5Br2. Green Chem. 2020, 22, 4884–4889.

[28]

Setvín, M.; Wagner, M.; Schmid, M.; Parkinson, G. S.; Diebold, U. Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chem. Soc. Rev. 2017, 46, 1772–1784.

[29]

Bai, X. J.; Wang, X. Y.; Jia, T. Q.; Guo, L. L.; Hao, D.; Zhang, Z. Y.; Wu, L. Y.; Zhang, X. R.; Yang, H.; Gong, Y. W. et al. Efficient degradation of PPCPs by Mo1−xS2−y with S vacancy at phase-junction: Promoted by innergenerate-H2O2. Appl. Catal. B: Environ. 2022, 310, 121302.

[30]

Liu, Y. W.; Cheng, M.; He, Z. H.; Gu, B. C.; Xiao, C.; Zhou, T. F.; Guo, Z. P.; Liu, J. D.; He, H. Y.; Ye, B. J. et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 731–735.

[31]

Wu, Z. H.; Shen, J.; Ma, N.; Li, Z. F.; Wu, M.; Xu, D. F.; Zhang, S. Y.; Feng, W. H.; Zhu, Y. F. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl. Catal. B: Environ. 2021, 286, 119937.

[32]

Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

[33]

Wen, F. S.; Liu, W. L. Three-dimensional ordered macroporous materials for photocatalysis: Design and applications. J. Mater. Chem. A 2021, 9, 18129–18147.

[34]

Cai, J. M.; Wu, M. Q.; Wang, Y. T.; Zhang, H.; Meng, M.; Tian, Y.; Li, X. G.; Zhang, J.; Zheng, L. R.; Gong, J. L. Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2017, 2, 877–892.

[35]

Chen, X. Q.; Ye, J. H.; Ouyang, S. X.; Kako, T.; Li, Z. S.; Zou, Z. G. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 2011, 5, 4310–4318.

[36]

Lin, B.; Yang, G. D.; Yang, B. L.; Zhao, Y. X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Appl. Catal. B: Environ. 2016, 198, 276–285.

[37]

Chang, Y.; Yu, K.; Zhang, C. X.; Li, R.; Zhao, P. Y.; Lou, L. L.; Liu, S. X. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Appl. Catal. B: Environ. 2015, 176–177, 363–373.

[38]

Wang, X. W.; Gan, L.; Lin, Q. Z.; Ye, S.; Zhang, R. B.; Liu, J. Micro-terminal regulation in nanoreactors for the construction of tantalum pentoxide single-crystal ordered networks with promoting enhanced hydrogen evolution performance. Chem. Eng. J. 2022, 431, 134139.

[39]

Yu, K.; Zhang, C. X.; Chang, Y.; Feng, Y. J.; Yang, Z. Q.; Yang, T.; Lou, L. L.; Liu, S. X. Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Appl. Catal. B: Environ. 2017, 200, 514–520.

[40]

Wang, Z.; Hou, J. G.; Yang, C.; Jiao, S. Q.; Huang, K.; Zhu, H. M. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ. Sci. 2013, 6, 2134–2144.

[41]

Xie, S. H.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Zhang, K. F.; Han, Z.; Arandiyan, H.; Dai, H. X. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B: Environ. 2017, 206, 221–232.

[42]

Pei, W. B.; Liu, Y. X.; Deng, J. G.; Zhang, K. F.; Hou, Z. Q.; Zhao, X. T.; Dai, H. X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B: Environ. 2019, 256, 117814.

[43]

Ran, L.; Qiu, S.; Zhai, P. L.; Li, Z. W.; Gao, J. F.; Zhang, X. M.; Zhang, B.; Wang, C.; Sun, L. C.; Hou, J. G. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 7402–7413.

[44]

Shu, C.; Han, C. Z.; Yang, X. Y.; Zhang, C.; Chen, Y.; Ren, S. J.; Wang, F.; Huang, F.; Jiang, J. X. Boosting the photocatalytic hydrogen evolution activity for D–π–A conjugated microporous polymers by statistical copolymerization. Adv. Mater. 2021, 33, 2008498.

[45]

Wu, H.; Irani, R.; Zhang, K. F.; Jing, L.; Dai, H. X.; Chung, H. Y.; Abdi, F. F.; Ng, Y. H. Unveiling carrier dynamics in periodic porous BiVO4 photocatalyst for enhanced solar water splitting. ACS Energy Lett. 2021, 6, 3400–3407.

[46]

Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.

[47]

Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

[48]

Hou, J. H.; Dai, D.; Wei, R.; Wu, X. G.; Wang, X. Z.; Tahir, M.; Zou, J. J. Narrowing the band gap of BiOCl for the hydroxyl radical generation of photocatalysis under visible light. ACS Sustainable Chem. Eng. 2019, 7, 16569–16576.

[49]

Zhang, K. F.; Chen, H. X.; Liu, Y. X.; Deng, J. G.; Jing, L.; Rastegarpanah, A.; Pei, W. B.; Han, Z.; Dai, H. X. Two-dimensional Bi2WxMo1−xO6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde. Appl. Catal. B: Environ. 2022, 315, 121545.

[50]

Wang, J. L.; Yu, Y.; Zhang, L. Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B: Environ. 2013, 136–137, 112–121.

[51]

Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron–hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

[52]

Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

[53]

Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

[54]

Han, T.; Cao, X.; Sun, K. A.; Peng, Q.; Ye, C. L.; Huang, A. J.; Cheong, W. C.; Chen, Z.; Lin, R.; Zhao, D. et al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun. 2021, 12, 4952.

[55]

Jing, J. F.; Yang, J.; Zhang, Z. J.; Zhu, Y. F. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv. Energy Mater. 2021, 11, 2101392.

[56]

Guo, Y.; Shi, W. X.; Zhu, Y. F. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat 2019, 1, e12007.

[57]

Liu, D.; Yao, W. Q.; Wang, J.; Liu, Y. F.; Zhang, M.; Zhu, Y. F. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. Appl. Catal. B: Environ. 2015, 172–173, 100–107.

[58]

Xiao, X.; Tu, S. H.; Lu, M. L.; Zhong, H.; Zheng, C. X.; Zuo, X. X.; Nan, J. M. Discussion on the reaction mechanism of the photocatalytic degradation of organic contaminants from a viewpoint of semiconductor photo-induced electrocatalysis. Appl. Catal. B: Environ. 2016, 198, 124–132.

[59]

Zhang, L. L.; Wang, Z. Q.; Li, T.; Hu, C.; Yang, M. Ultrathin Bi4O5Br2 nanosheets with surface oxygen vacancies and strong interaction with Bi2O2CO3 for highly efficient removal of water contaminants. Environ. Sci.: Nano 2022, 9, 1341–1352.

[60]

Ji, X. Y.; Wang, Y. Y.; Li, Y.; Sun, K.; Yu, M.; Tao, J. Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The leading role of facet engineering. Nano Res. 2022, 15, 6045–6053.

[61]

Zhang, K. F.; Liu, Y. X.; Deng, J. G.; Xie, S. H.; Zhao, X. T.; Yang, J.; Han, Z.; Dai, H. X. Co-Pd/BiVO4: High-performance photocatalysts for the degradation of phenol under visible light irradiation. Appl. Catal. B: Environ. 2018, 224, 350–359.

[62]

Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

[63]

Wang, T.; Tao, X. Q.; Xiao, Y.; Qiu, G. H.; Yang, Y.; Li, B. X. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal. Sci. Technol. 2020, 10, 138–146.

[64]

Zhou, Z. T.; Li, K. X.; Deng, W. Y.; Li, J.; Yan, Y. H.; Li, Y. W.; Quan, X. K.; Wang, T. Nitrogen vacancy mediated exciton dissociation in carbon nitride nanosheets: Enhanced hydroxyl radicals generation for efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 387, 122023.

[65]

Ji, J. H.; Yan, Q. Y.; Yin, P. C.; Mine, S.; Matsuoka, M.; Xing, M. Y. Defects on CoS2−x: Tuning redox reactions for sustainable degradation of organic pollutants. Angew. Chem., Int. Ed. 2021, 60, 2903–2908.

Nano Research
Pages 8871-8881
Cite this article:
Zhang K, Chen H, Pei W, et al. Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal. Nano Research, 2023, 16(7): 8871-8881. https://doi.org/10.1007/s12274-023-5582-5
Topics:
Part of a topical collection:

978

Views

12

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 05 December 2022
Revised: 07 February 2023
Accepted: 15 February 2023
Published: 06 May 2023
© Tsinghua University Press 2023
Return