Journal Home > Volume 16 , Issue 7

Oxygen reduction reaction (ORR) plays an important role in the next-generation energy storage technologies, whereas it involves the sluggish and complicated proton-coupled electron transfer (PCET) steps that greatly limit the ORR kinetics. Therefore, it is urgent to construct an efficient catalyst that could simultaneously achieve the rapid oxygen-containing intermediates conversion and fast PCET process but remain challenging. Herein, the adjacent Fe3C nanoparticles coupling with single Fe sites on the bubble-wrap-like porous N-doped carbon (Fe3C@FeSA-NC) were deliberately constructed. Theoretical investigations reveal that the adjacent Fe3C nanoparticles speed up the water dissociation and serve as proton-feeding centers for boosting the ORR kinetics of single Fe sites. Benefiting from the synergistic effect of the Fe3C and single Fe sites, the Fe3C@FeSA-NC affords an excellent half-wave potential of 0.88 V, and enables the assembled Zn-air batteries with the high peak power density of 164.5 mW·cm−2 and long-term stability of over 200 h at high current densities at 50 mA·cm−2. This work clarifies the mechanism for improving ORR kinetics of single atomic sites by engineering the adjacent proton-feeding centers, shedding light on the rational design of cost-effective electrocatalysts for energy conversion and storage technologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering adjacent Fe3C as proton-feeding centers to single Fe sites enabling boosted oxygen reduction reaction kinetics for robust Zn-air batteries at high current densities

Show Author's information Canhui ZhangXingkun Wang( )Kai SongKaiyue ChenShuixing DaiHuanlei WangMinghua Huang( )
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Oxygen reduction reaction (ORR) plays an important role in the next-generation energy storage technologies, whereas it involves the sluggish and complicated proton-coupled electron transfer (PCET) steps that greatly limit the ORR kinetics. Therefore, it is urgent to construct an efficient catalyst that could simultaneously achieve the rapid oxygen-containing intermediates conversion and fast PCET process but remain challenging. Herein, the adjacent Fe3C nanoparticles coupling with single Fe sites on the bubble-wrap-like porous N-doped carbon (Fe3C@FeSA-NC) were deliberately constructed. Theoretical investigations reveal that the adjacent Fe3C nanoparticles speed up the water dissociation and serve as proton-feeding centers for boosting the ORR kinetics of single Fe sites. Benefiting from the synergistic effect of the Fe3C and single Fe sites, the Fe3C@FeSA-NC affords an excellent half-wave potential of 0.88 V, and enables the assembled Zn-air batteries with the high peak power density of 164.5 mW·cm−2 and long-term stability of over 200 h at high current densities at 50 mA·cm−2. This work clarifies the mechanism for improving ORR kinetics of single atomic sites by engineering the adjacent proton-feeding centers, shedding light on the rational design of cost-effective electrocatalysts for energy conversion and storage technologies.

Keywords: oxygen reduction reaction, water dissociation, discharge stability, proton-coupled electron transfer

References(54)

[1]

Qin, X.; Wang, Z.; Han, J. R.; Luo, Y. L.; Xie, F.; Cui, G.; Guo, X.; Sun, X. Fe-doped CoP nanosheet arrays: An efficient bifunctional catalyst for zinc-air batteries. Chem. Commun. 2018, 54, 7693–7696.

[2]
Wu, J. B.; Su, J. W.; Wu, J.; Huang, L.; Li, Q.; Luo, Y. X.; Jin, H. R.; Zhou, J.; Zhai, T. Y.; Wang, D. S. et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater., in press, https://doi.org/10.1002/adma.202209954.
DOI
[3]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 134, e202213318.

[4]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

[7]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[8]

Sun, M. Z.; Gong, S. Y.; Zhang, Y. X.; Niu, Z. Q. A perspective on the PGM-free metal-nitrogen-carbon catalysts for PEMFC. J. Energy Chem. 2022, 67, 250–254.

[9]

Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

[10]

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[11]

Cao, M. M.; Liu, Y. Y.; Sun, K.; Li, H.; Lin, X. Q.; Zhang, P. X.; Zhou, L. M.; Wang, A.; Mehdi, S.; Wu, X. L. et al. Coupling Fe3C nanoparticles and N-doping on wood-derived carbon to construct reversible cathode for Zn-air batteries. Small 2022, 18, 2202014.

[12]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. L.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[13]

Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.

[14]

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

[15]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[16]

Zhang, P. X.; Liu, Y. Y.; Wang, S. L.; Zhou, L. M.; Liu, T.; Sun, K.; Cao, H. Q.; Jiang, J. C.; Wu, X. L.; Li, B. J. Wood-derived monolithic catalysts with the ability of activating water molecules for oxygen electrocatalysis. Small 2022, 18, 2202725.

[17]

Jiang, R.; Li, Q.; Zheng, X.; Wang, W. Z.; Wang, S. B.; Xu, Z. M.; Wu, J. B. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Res. 2022, 15, 7917–7924.

[18]

Liu, S.; Cheng, H.; Xia, J.; Wang, C.; Gui, R. J.; Zhou, T. P.; Liu, H. F.; Peng, J.; Zhang, N.; Wang, W. J. et al. Surface microenvironment optimization-induced robust oxygen reduction for neutral zinc-air batteries. Nat. Sci. 2021, 1, e20210005.

[19]

Chen, G. B.; Wang, T.; Liu, P.; Liao, Z. Q.; Zhong, H. X.; Wang, G.; Zhang, P. P.; Yu, M. H.; Zschech, E.; Chen, M. W. et al. Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy Environ. Sci. 2020, 13, 2849–2855.

[20]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[21]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[22]

Li, Z. J.; Ji, S. Q.; Xu, C.; Leng, L. P.; Liu, H. X.; Horton, J. H.; Du, L.; Gao, J. C.; He, C.; Qi, X. Y. et al. Engineering the electronic structure of single-atom iron sites with boosted oxygen bifunctional activity for zinc-air batteries. Adv. Mater. 2022, 2209644.

[23]

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

[24]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[25]

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

[26]

Feng, W. T.; Cui, Y. P.; Liu, W.; Wang, H. L.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Gao, X.; Wang, T. Q. Rigid-flexible coupling carbon skeleton and potassium-carbonate-dominated solid electrolyte interface achieving superior potassium-ion storage. ACS Nano 2020, 14, 4938–4949.

[27]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

[28]

Yao, H. X.; Wang, X. K.; Li, K.; Li, C.; Zhang, C. H.; Zhou, J.; Cao, Z. W.; Wang, H. L.; Gu, M.; Huang, M. H. et al. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl. Catal. B: Environ. 2022, 312, 121378.

[29]

Zhou, J. Q.; Qian, T.; Yang, T. Z.; Wang, M. F.; Guo, J.; Yan, C. L. Nanomeshes of highly crystalline nitrogen-doped carbon encapsulated Fe/Fe3C electrodes as ultrafast and stable anodes for Li-ion batteries. J. Mater. Chem. A 2015, 3, 15008–15014.

[30]

Wei, X. Q.; Song, S. J.; Wu, N. N.; Luo, X.; Zheng, L. R.; Jiao, L.; Wang, H. J.; Fang, Q.; Hu, L. Y.; Gu, W. L. et al. Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte. Nano Energy 2021, 84, 105840.

[31]

Xu, C. L.; Guo, C. Z.; Liu, J. P.; Hu, B. H.; Dai, J. Y.; Wang, M.; Jin, R.; Luo, Z. L.; Li, H. L.; Chen, C. G. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater. 2022, 51, 149–158.

[32]

Gao, L.; Zhang, L. L.; Yang, X. L. N,S-codoped porous carbon nanosheets decorated with Fe3C nanoparticles as high-performance anode materials for lithium ion hybrid supercapacitors. Rare Met. 2022, 41, 2517–2526.

[33]

Yuan, S.; Cui, L. L.; Dou, Z. Y.; Ge, X.; He, X. Q.; Zhang, W.; Asefa, T. Nonprecious bimetallic sites coordinated on N-doped carbons with efficient and durable catalytic activity for oxygen reduction. Small 2020, 16, 2000742.

[34]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[35]

Qiang, F. Q.; Feng, J. G.; Wang, H. L.; Yu, J. H.; Shi, J.; Huang, M. H.; Shi, Z. C.; Liu, S.; Li, P.; Dong, L. F. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc-air batteries. ACS Catal. 2022, 12, 4002–4015.

[36]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.

[37]

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

[38]

Zeng, Z. P.; Gan, L. Y.; Bin Yang, H.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[39]

Cai, S. C.; Cheng, Y. P.; Meng, Z. H.; Li, G. J.; Wu, J. B.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. The design of single iron atoms dispersed with nitrogen coordination environment electrocatalyst for zinc-air battery. J. Power Sources 2022, 529, 231174.

[40]

Zhao, S. N.; Li, J. K.; Wang, R.; Cai, J. M.; Zang, S. Q. Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction. Adv. Mater. 2022, 34, 2107291.

[41]

Dong, Y.; Wang, Y.; Tian, Z. Q.; Jiang, K. M.; Li, Y. L.; Lin, Y. C.; Oloman, C. W.; Gyenge, E. L.; Su, J. W.; Chen, L. Enhanced catalytic performance of Pt by coupling with carbon defects. Innovation 2021, 2, 100161.

[42]

Wang, J. L.; Chen, F. Y.; Jin, Y. C.; Johnston, R. L. Gold-copper aerogels with intriguing surface electronic modulation as highly active and stable electrocatalysts for oxygen reduction and borohydride oxidation. ChemSusChem 2018, 11, 1354–1364.

[43]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

[44]

Zhou, J.; Han, Z. K.; Wang, X. K.; Gai, H. Y.; Chen, Z. K.; Guo, T.; Hou, X. B.; Xu, L. L.; Hu, X. J.; Huang, M. H. et al. Discovery of quantitative electronic structure-OER activity relationship in metal-organic framework electrocatalysts using an integrated theoretical-experimental approach. Adv. Funct. Mater. 2021, 31, 2102066.

[45]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, 9120027.

[46]

Li, C.; Zhao, D. H.; Long, H. L.; Li, M. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021, 40, 2657–2689.

[47]

Gong, S. Y.; Sun, M. Z.; Lee, Y.; Becknell, N.; Zhang, J. W.; Wang, Z. Q.; Zhang, L.; Niu, Z. Q. Bulk-like Pt (100)-oriented ultrathin surface: Combining the merits of single crystals and nanoparticles to boost oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202214516.

[48]

Zhou, F. L.; Yu, P.; Sun, F. F.; Zhang, G. Y.; Liu, X.; Wang, L. The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn-air batteries. J. Mater. Chem. A 2021, 9, 6831–6840.

[49]

Wei, X. Q.; Song, S. J.; Cai, W. W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X. S.; Wu, N. N.; Luo, Z.; Wang, H. J. et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.

[50]

Wang, X. K.; Chen, Z. K.; Han, Z. K.; Gai, H. Y.; Zhou, J.; Wang, Y. R.; Cui, P. X.; Ge, J. J.; Xing, W.; Zheng, X. S. et al. Manipulation of new married edge-adjacent Fe2N5 catalysts and identification of active species for oxygen reduction in wide pH range. Adv. Funct. Mater. 2022, 32, 2111835.

[51]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[52]

Wang, X. K.; Zhan, G. M.; Wang, Y. R.; Zhang, Y.; Zhou, J.; Xu, R.; Gai, H. Y.; Wang, H. L.; Jiang, H. Q.; Huang, M. H. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn-air batteries. J. Energy Chem. 2022, 68, 113–123.

[53]

Zhang, S. B.; Wu, Y. F.; Zhang, Y. X.; Niu, Z. Q. Dual-atom catalysts: Controllable synthesis and electrocatalytic applications. Sci. China Chem. 2021, 64, 1908–1922.

[54]

Ma, Z. M.; Liu, S. Q.; Tang, N. F.; Song, T.; Motokura, K.; Shen, Z. M.; Yang, Y. Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 2022, 12, 5595–5604.

File
12274_2023_5578_MOESM1_ESM.pdf (1.9 MB)
12274_2023_5578_MOESM2_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2023
Revised: 11 February 2023
Accepted: 13 February 2023
Published: 28 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52261145700 and 22279124), the Natural Science Foundation of Shandong Province (No. ZR2020ZD10), and the Fundamental Research Funds for the Central Universities (No. 202262010).

Return