AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution

Huakai XuXiaofei WeiHui ZengChuanhai JiangZhifei WangYuguo OuyangChunyu LuYuan JingShiwei YaoFangna Dai( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

This review summarizes the evaluation parameters of oxygen evolution reaction (OER) catalyst performance and the synthesis strategy of two-dimensional (2D) metal-organic framework (MOF), and then, the recent progress of 2D MOFs and their derivatives as OER catalysis, including hydroxide, metal/alloy/oxide, metal sulfide/selenide, and metal phosphide, was reviewed. Finally, the challenges and prospects of 2D MOF nanosheets and their derivatives in OER electrocatalysis are discussed with a view to advancing the field.

Abstract

High-performance electrocatalysts for oxygen evolution reaction (OER) are crucial for water splitting and metal-air batteries. Two-dimensional (2D) metal-organic framework (MOF) has become a new class of efficient OER electrocatalysts due to the rich coordination unsaturated metal nodes, large specific surface area, and adjustable structures. In addition, because inheriting the original microstructure of MOFs and having stronger chemical and mechanical stability, metal/alloy/oxide, metal sulfide/selenide/phosphide, and other compounds derived from 2D MOFs have also shown their unique OER catalytic ability. Here, we briefly introduced the existing reaction mechanism and evaluation parameters of catalyst performance of OER, introduced the synthesis methods and corresponding characterization techniques of 2D MOFs and their derivatives, and summarized the latest progress of 2D MOFs and their derivatives as OER catalysts. Finally, we put forward some views and suggestions on the existing problems hindering the development of 2D MOFs as OER for advancing the field.

References

[1]

Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Seawater electrolyte-based metal-air batteries: From strategies to applications. Energy Environ. Sci. 2020, 13, 3253–3268.

[2]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[3]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

[4]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[5]

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

[6]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[7]

Weng, B.; Xu, F.; Wang, C.; Meng, W.; Grice, C. R.; Yan, Y. A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 2017, 10, 121–128.

[8]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[9]

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

[10]

Seoane, B.; Coronas, J.; Gascon, I.; Benavides, M. E.; Karvan, O.; Caro, J.; Kapteijn, F.; Gascon, J. Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chem. Soc. Rev. 2015, 44, 2421–2454.

[11]

Zhang, H.; Xiao, Q.; Guo, X. H.; Li, N. J.; Kumar, P.; Rangnekar, N.; Jeon, M. Y.; Al-Thabaiti, S.; Narasimharao, K.; Basahel, S. N. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem., Int. Ed. 2016, 55, 7184–7187.

[12]

Wang, J.; Hu, C.; Wang, Y. S.; Cui, H. Chemiluminescent two-dimensional metal-organic framework with multiple metal catalytic centers and its peroxidase-like activity for sensing of small molecules. ACS Appl. Mater. Interfaces 2022, 14, 3156–3164.

[13]

Zhao, Y. W.; Guo, L. E.; Zhang, F. Q.; Yao, J.; Zhang, X. M. Turn-on fluorescence enantioselective sensing of hydroxyl carboxylic enantiomers by metal-organic framework nanosheets with a homochiral tetracarboxylate of cyclohexane diamide. ACS Appl. Mater. Interfaces 2021, 13, 20821–20829.

[14]

He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

[15]

Qin, Y. T.; Li, Z. X.; Duan, Y. L.; Guo, J.; Zhao, M. T.; Tang, Z. Y. Nanostructural engineering of metal-organic frameworks: Construction strategies and catalytic applications. Matter 2022, 5, 3260–3310.

[16]

Jiang, Q. Y.; Zhou, C. H.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, R. F. Two-dimensional metal-organic framework nanosheets: Synthetic methodologies and electrocatalytic applications. J. Mater. Chem. A 2020, 8, 15271–15301.

[17]

Lei, J.; Zeng, M. Q.; Fu, L. Two-dimensional metal-organic frameworks as electrocatalysts for oxygen evolution reaction. Chem. Res. Chin. Univ. 2020, 36, 504–510.

[18]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

[19]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[20]

Peng, Y.; Li, Y. S.; Ban, Y. J.; Yang, W. S. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem., Int. Ed. 2017, 56, 9757–9761.

[21]

Kim, J.; Lee, S.; Kim, J.; Lee, D. Metal-organic frameworks derived from zero-valent metal substrates: Mechanisms of formation and modulation of properties. Adv. Funct. Mater. 2019, 29, 1808466.

[22]

Huo, J. M.; Wang, Y.; Meng, J.; Zhao, X. Y.; Zhai, Q. G.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Chen, Y. π···π interaction directed 2D FeNi-LDH nanosheets from 2D Hofmann-MOFs for the oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 1815–1820.

[23]

Li, Y. W.; Lu, M. T.; He, P. P.; Wu, Y. H.; Wang, J. W.; Chen, D. N.; Xu, H.; Gao, J. K.; Yao, J. M. Bimetallic metal-organic framework-derived nanosheet-assembled nanoflower electrocatalysts for efficient oxygen evolution reaction. Chem. Asian J. 2019, 14, 1590–1594.

[24]

Zhou, J.; Dou, Y. B.; Zhou, A. W.; Shu, L.; Chen, Y.; Li, J. R. Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 2018, 3, 1655–1661.

[25]

Yuan, B. B.; Li, C. Q.; Guan, L. H.; Li, K.; Lin, Y. Q. Prussian blue analog nanocubes tuning synthesis of coral-like Ni3S2@Mil-53(NiFeCo) core–shell nanowires array and boosting oxygen evolution reaction. J. Power Sources 2020, 451, 227295.

[26]

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

[27]

Sahu, N.; Das, J. K.; Behera, J. N. Metal-organic framework (MOF) derived flower-shaped CoSe2 nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions. Sustainable Energy Fuels 2021, 5, 4992–5000.

[28]

Wang, X. P.; Xi, S. B.; Huang, P. R.; Du, Y. H.; Zhong, H. Y.; Wang, Q.; Borgna, A.; Zhang, Y. W.; Wang, Z. B.; Wang, H. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702–708.

[29]

Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.

[30]

Damjanovic, A.; Jovanovic, B. Anodic oxide films as barriers to charge transfer in  O2 evolution at Pt in acid solutions. J. Electrochem. Soc. 1976, 123, 374–381.

[31]

Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015, 5, 12167.

[32]

Hardin, W. G.; Slanac, D. A.; Wang, X. Q.; Dai, S.; Johnston, K. P.; Stevenson, K. J. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 2013, 4, 1254–1259.

[33]

Hardin, W. G.; Mefford, J. T.; Slanac, D. A.; Patel, B. B.; Wang, X. Q.; Dai, S.; Zhao, X.; Ruoff, R. S.; Johnston, K. P.; Stevenson, K. J. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 2014, 26, 3368–3376.

[34]

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

[35]

Forslund, R. P.; Hardin, W. G.; Rong, X.; Abakumov, A. M.; Filimonov, D.; Alexander, C. T.; Mefford, J. T.; Iyer, H.; Kolpak, A. M.; Johnston, K. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexOδ ruddlesden-popper oxides. Nat. Commun. 2018, 9, 3150.

[36]

Li, X.; Wang, H.; Cui, Z. M.; Li, Y. T.; Xin, S.; Zhou, J. S.; Long, Y. W.; Jin, C. Q.; Goodenough, J. B. Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3. Sci. Adv. 2019, 5, eaav6262.

[37]

Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

[38]

Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

[39]

Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. L. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem., Int. Ed. 2019, 58, 10295–10299.

[40]

Roy, C.; Sebok, B.; Scott, S. B.; Fiordaliso, E. M.; Sørensen, J. E.; Bodin, A.; Trimarco, D. B.; Damsgaard, C. D.; Vesborg, P. C. K.; Hansen, O. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 2018, 1, 820–829.

[41]

Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

[42]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[43]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[44]

Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chem. Eng. J. 2021, 425, 130686.

[45]

Li, G. L.; Zhang, X. B.; Zhang, H.; Liao, C. Y.; Jiang, G. B. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2019, 249, 147–154.

[46]

Zhao, K. M.; Zhu, W. W.; Liu, S. Q.; Wei, X. L.; Ye, G. Y.; Su, Y. K.; He, Z. Two-dimensional metal-organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Adv. 2020, 2, 536–562.

[47]

Xue, Y. P.; Zhao, G. C.; Yang, R. Y.; Chu, F.; Chen, J.; Wang, L.; Huang, X. B. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936.

[48]

Zhao, M. T.; Lu, Q. P.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets. Small Methods 2017, 1, 1600030.

[49]

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

[50]

Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

[51]

Peng, Y.; Yang, W. S. 2D metal-organic framework materials for membrane-based separation. Adv. Mater. Interfaces 2020, 7, 1901514.

[52]

Varsha, M. V.; Nageswaran, G. Review—2D layered metal organic framework nanosheets as an emerging platform for electrochemical sensing. J. Electrochem. Soc. 2020, 167, 136502.

[53]
Zhu, A. X.; Dou, A. N.; Fang, X. D.; Yang, L. B.; Xu, Q. Q. Retracted article: Chemical etching of a cobalt-based metal-organic framework for enhancing the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A, in press, https://doi.org/10.1039/C7TA02103H.
[54]

Zhao, H. A.; Yu, L.; Zhang, L. T.; Dai, L. M.; Yao, F. L.; Huang, Y.; Sun, J. W.; Zhu, J. W. Facet engineering in ultrathin two-dimensional NiFe metal-organic frameworks by coordination modulation for enhanced electrocatalytic water oxidation. ACS Sustainable Chem. Eng. 2021, 9, 10892–10901.

[55]

Amo-Ochoa, P.; Welte, L.; González-Prieto, R.; Sanz Miguel, P. J.; Gómez-García, C. J.; Mateo-Martí, E.; Delgado, S.; Gómez-Herrero, J.; Zamora, F. Single layers of a multifunctional laminar Cu(I, II) coordination polymer. Chem. Commun. 2010, 46, 3262–3264.

[56]

Kondo, A.; Tiew, C. C.; Moriguchi, F.; Maeda, K. Fabrication of metal-organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans. 2013, 42, 15267–15270.

[57]

Foster, J. A.; Henke, S.; Schneemann, A.; Fischer, R. A.; Cheetham, A. K. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. Chem. Commun. 2016, 52, 10474–10477.

[58]

Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 2011, 47, 8436–8438.

[59]

Saines, P. J.; Tan, J. C.; Yeung, H. H. M.; Barton, P. T.; Cheetham, A. K. Layered inorganic–organic frameworks based on the 2, 2-dimethylsuccinate ligand: Structural diversity and its effect on nanosheet exfoliation and magnetic properties. Dalton Trans. 2012, 41, 8585–8593.

[60]

Luo, Y. H.; Chen, C.; He, C.; Zhu, Y. Y.; Hong, D. L.; He, X. T.; An, P. J.; Wu, H. S.; Sun, B. W. Single-layered two-dimensional metal-organic framework nanosheets as an in situ visual test paper for solvents. ACS Appl. Mater. Interfaces 2018, 10, 28860–28867.

[61]

Beldon, P. J.; Tominaka, S.; Singh, P.; Saha Dasgupta, T.; Bithell, E. G.; Cheetham, A. K. Layered structures and nanosheets of pyrimidinethiolate coordination polymers. Chem. Commun. 2014, 50, 3955–3957.

[62]

Xu, H.; Gao, J. K.; Qian, X. F.; Wang, J. P.; He, H. J.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Qian, G. D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905.

[63]

Tan, J. C.; Saines, P. J.; Bithell, E. G.; Cheetham, A. K. Hybrid nanosheets of an inorganic–organic framework material: Facile synthesis, structure, and elastic properties. ACS Nano 2012, 6, 615–621.

[64]

Gomez, G. E.; Bernini, M. C.; Brusau, E. V.; Narda, G. E.; Vega, D.; Kaczmarek, A. M.; Van Deun, R.; Nazzarro, M. Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. Dalton Trans. 2015, 44, 3417–3429.

[65]

Wang, H. S.; Li, J.; Li, J. Y.; Wang, K.; Ding, Y.; Xia, X. H. Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater. 2017, 9, e354–e354.

[66]

Cliffe, M. J.; Castillo-Martínez, E.; Wu, Y.; Lee, J.; Forse, A. C.; Firth, F. C. N.; Moghadam, P. Z.; Fairen-Jimenez, D.; Gaultois, M. W.; Hill, J. A. et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework. J. Am. Chem. Soc. 2017, 139, 5397–5404.

[67]

Chandrasekhar, P.; Mukhopadhyay, A.; Savitha, G.; Moorthy, J. N. Orthogonal self-assembly of a trigonal triptycene triacid: Signaling of exfoliation of porous 2D metal-organic layers by fluorescence and selective CO2 capture by the hydrogen-bonded MOF. J. Mater. Chem. A 2017, 5, 5402–5412.

[68]

Hai, G. T.; Jia, X. L.; Zhang, K. Y.; Liu, X.; Wu, Z. Y.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345–352.

[69]

Wei, X. F.; Wang, S.; Hua, Z. L.; Chen, L. S.; Shi, J. L. Metal-organic framework nanosheet electrocatalysts for efficient H2 production from methanol solution: Methanol-assisted water splitting or methanol reforming. ACS Appl. Mater. Interfaces 2018, 10, 25422–25428.

[70]

Pang, W.; Shao, B.; Tan, X. Q.; Tang, C.; Zhang, Z.; Huang, J. Exfoliation of metal-organic frameworks into efficient single-layer metal-organic nanosheet electrocatalysts by the synergistic action of host−guest interactions and sonication. Nanoscale 2020, 12, 3623–3629.

[71]

Han, L. J.; Zheng, D.; Chen, S. G.; Zheng, H. G.; Ma, J. A highly solvent-stable metal-organic framework nanosheet: Morphology control, exfoliation, and luminescent property. Small 2018, 14, 1703873.

[72]

Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gómez-García, C. J.; Mateo-Martí, E.; Martínez, J. I.; Flores, F.; Gómez-Navarro, C.; Gómez-Herrero, J. et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv. Mater. 2013, 25, 2141–2146.

[73]

Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

[74]

Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

[75]

Ding, Y. J.; Chen, Y. P.; Zhang, X. L.; Chen, L.; Dong, Z. H.; Jiang, H. L.; Xu, H. X.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136–9139.

[76]

Song, W. J. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta 2017, 170, 74–80.

[77]

Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

[78]

Choi, E. Y.; Barron, P. M.; Novotny, R. W.; Son, H. T.; Hu, C. H.; Choe, W. Pillared porphyrin homologous series: Intergrowth in metal-organic frameworks. Inorg. Chem. 2009, 48, 426–428.

[79]

Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; Van Klink, G. P. M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87.

[80]

Chen, J. Y.; Zhuang, P. Y.; Ge, Y. C.; Chu, H.; Yao, L. Y.; Cao, Y. D.; Wang, Z. Y.; Chee, M. O. L.; Dong, P.; Shen, J. F. et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903875.

[81]

Yang, L.; Zhu, G. L.; Wen, H.; Guan, X.; Sun, X.; Feng, H.; Tian, W. L.; Zheng, D. C.; Cheng, X. W.; Yao, Y. D. Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis. J. Mater. Chem. A 2019, 7, 8771–8776.

[82]

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

[83]

Huang, L.; Zhang, X.; Han, Y.; Wang, Q.; Fang, Y.; Dong, S. In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617.

[84]

Hu, A. Q.; Pang, Q. Q.; Tang, C.; Bao, J. X.; Liu, H. Q.; Ba, K.; Xie, S. H.; Chen, J.; Chen, J. H.; Yue, Y. W. et al. Epitaxial growth and integration of insulating metal-organic frameworks in electrochemistry. J. Am. Chem. Soc. 2019, 141, 11322–11327.

[85]

Huang, X.; Sheng, P.; Tu, Z. Y.; Zhang, F. J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y. P.; Sun, Y. M. et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408.

[86]

Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng, X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058–12063.

[87]

Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 2017, 139, 19–22.

[88]

Huang, J. K.; Li, M. L.; Wan, Y.; Dey, S.; Ostwal, M.; Zhang, D. L.; Yang, C. W.; Su, C. J.; Jeng, U. S.; Ming, J. et al. Functional two-dimensional coordination polymeric layer as a charge barrier in Li-S batteries. ACS Nano 2018, 12, 836–843.

[89]

Abhervé, A.; Mañas-Valero, S.; Clemente-León, M.; Coronado, E. Graphene related magnetic materials: Micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 2015, 6, 4665–4673.

[90]

Deng, T.; Lu, Y.; Zhang, W.; Sui, M.; Shi, X. Y.; Wang, D.; Zheng, W. T. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 2018, 8, 1702294.

[91]

Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.

[92]

Song, D. Q.; Guo, H. Z.; Huang, K.; Zhang, H. Y.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater. Today 2022, 54, 42–51.

[93]

Jiang, M.; Li, J.; Cai, X. F.; Zhao, Y.; Pan, L. J.; Cao, Q. Q.; Wang, D. H.; Du, Y. W. Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: Two-dimensional metal-organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. Nanoscale 2018, 10, 19774–19780.

[94]

Hu, X. Y.; Tan, P. F.; Dong, R.; Jiang, M.; Lu, L. L.; Wang, Y.; Liu, H. Q.; Liu, Y.; Xie, J. P.; Pan, J. A novel metal-organic framework intermediated synthesis of heterogeneous CoS2/CoS porous nanosheets for enhanced oxygen evolution reaction. Energy Technol. 2021, 9, 2000961.

[95]

Hu, Q.; Huang, X. W.; Wang, Z. Y.; Li, G. M.; Han, Z.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution. J. Mater. Chem. A 2020, 8, 2140–2146.

[96]

Li, H.; Ke, F.; Zhu, J. F. MOF-derived ultrathin cobalt phosphide nanosheets as efficient bifunctional hydrogen evolution reaction and oxygen evolution reaction electrocatalysts. Nanomaterials 2018, 8, 89.

[97]

Lin, Y. F.; Wan, H.; Wu, D.; Chen, G.; Zhang, N.; Liu, X. H.; Li, J. H.; Cao, Y. J.; Qiu, G. Z.; Ma, R. Z. Metal-organic framework hexagonal nanoplates: Bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7317–7321.

[98]

Srinivas, K.; Lu, Y. J.; Chen, Y. F.; Zhang, W. L.; Yang, D. X. FeNi3-Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting. ACS Sustainable Chem. Eng. 2020, 8, 3820–3831.

[99]

Yuan, M. L.; Dipazir, S.; Wang, M.; Sun, Y.; Gao, D. L.; Bai, Y. L.; Zhang, M.; Lu, P. L.; He, H. Y.; Zhu, X. Y. et al. Polyoxometalate-assisted formation of CoSe/MoSe2 heterostructures with enhanced oxygen evolution activity. J. Mater. Chem. A 2019, 7, 3317–3326.

[100]

Huang, L.; Gao, G.; Zhang, H.; Chen, J. X.; Fang, Y. X.; Dong, S. J. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 2020, 68, 104296.

[101]

Jayaramulu, K.; Dubal, D. P.; Schneemann, A.; Ranc, V.; Perez-Reyes, C.; Stráská, J.; Kment, Š.; Otyepka, M.; Fischer, R. A.; Zbořil, R. Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes. Adv. Funct. Mater. 2019, 29, 1902539.

[102]

Meng, J. J.; Zhou, Y.; Chi, H. H.; Li, K.; Wan, J. M.; Hu, Z. W. Bimetallic porphyrin MOF anchored onto rGO nanosheets as a highly efficient 2D electrocatalyst for oxygen evolution reaction in alkaline conditions. ChemistrySelect 2019, 4, 8661–8670.

[103]

Yang, C.; Cai, W. J.; Yu, B. B.; Qiu, H.; Li, M. L.; Zhu, L. W.; Yan, Z.; Hou, L.; Wang, Y. Y. Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal-organic frameworks. Catal. Sci. Technol. 2020, 10, 3897–3903.

[104]

Li, Y.; Gao, Z. G.; Bao, H. M.; Zhang, B. H.; Wu, C.; Huang, C. F.; Zhang, Z. L.; Xie, Y. Y.; Wang, H. Amorphous nickel-cobalt bimetal-organic framework nanosheets with crystalline motifs enable efficient oxygen evolution reaction: Ligands hybridization engineering. J. Energy Chem. 2021, 53, 251–259.

[105]

Lu, M. T.; Li, Y. W.; He, P. P.; Cong, J. K.; Chen, D. N.; Wang, J. W.; Wu, Y. H.; Xu, H.; Gao, J. K.; Yao, J. M. Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2019, 272, 32–37.

[106]

Zhuang, L. Z.; Ge, L.; Liu, H. L.; Jiang, Z. R.; Jia, Y.; Li, Z. H.; Yang, D. J.; Hocking, R. K.; Li, M. R.; Zhang, L. Z. et al. A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal-organic framework nanosheets for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 13565–13572.

[107]

Han, M. Y.; Zhang, X. W.; Gao, H. Y.; Chen, S. Y.; Cheng, P.; Wang, P.; Zhao, Z. Y.; Dang, R.; Wang, G. In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Chem. Eng. J. 2021, 426, 131348.

[108]

Li, W. X.; Fang, W.; Wu, C.; Dinh, K. N.; Ren, H.; Zhao, L.; Liu, C. T.; Yan, Q. Y. Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J. Mater. Chem. A 2020, 8, 3658–3666.

[109]

Xu, J.; Zhu, X.; Jia, X. L. From low- to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 16629–16639.

[110]

Wang, C. P.; Liu, H. Y.; Bian, G.; Gao, X. X.; Zhao, S. C.; Kang, Y.; Zhu, J.; Bu, X. H. Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution. Small 2019, 15, 1906086.

[111]

Thangasamy, P.; Shanmuganathan, S.; Subramanian, V. A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, 2073–2079.

[112]

Jia, J. W.; Wei, L. F.; Li, F.; Yu, C. L.; Yang, K.; Liang, T. X. In situ growth of NiFe MOF/NF by controlling solvent mixtures as efficient electrocatalyst in oxygen evolution. Inorg. Chem. Commun. 2021, 128, 108605.

[113]

Rui, K.; Zhao, G. Q.; Chen, Y. P.; Lin, Y.; Zhou, Q.; Chen, J. Y.; Zhu, J. X.; Sun, W. P.; Huang, W.; Dou, S. X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1801554.

[114]

Liu, M. J.; Zheng, W. R.; Ran, S. J.; Boles, S. T.; Lee, L. Y. S. Overall water-splitting electrocatalysts based on 2D CoNi-metal-organic frameworks and its derivative. Adv. Mater. Interfaces 2018, 5, 1800849.

[115]

Pan, C. C.; Liu, Z. C.; Huang, M. H. 2D iron-doped nickel MOF nanosheets grown on nickel foam for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 529, 147201.

[116]

Bai, Y.; Zhang, G. X.; Zheng, S. S.; Li, Q.; Pang, H.; Xu, Q. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci. China Mater. 2021, 64, 137–148.

[117]

Xing, D. N.; Wang, Y. Y.; Zhou, P.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π-d conjugated metal-organic framework for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2020, 278, 119295.

[118]

Mu, X. Q.; Yuan, H. M.; Jing, H. Y.; Xia, F. J.; Wu, J. S.; Gu, X. Y.; Chen, C. Y.; Bao, J. C.; Liu, S. L.; Mu, S. C. Superior electrochemical water oxidation in vacancy defect-rich 1.5 nm ultrathin trimetal-organic framework nanosheets. Appl. Catal. B: Environ. 2021, 296, 120095.

[119]

Shrestha, N. K.; Patil, S. A.; Cho, S.; Jo, Y.; Kim, H.; Im, H. Cu-Fe-NH2 based metal-organic framework nanosheets via drop-casting for highly efficient oxygen evolution catalysts durable at ultrahigh currents. J. Mater. Chem. A 2020, 8, 24408–24418.

[120]

Wang, J. L.; Zhang, M. L.; Li, J. H.; Jiao, F. X.; Lin, Y.; Gong, Y. Q. A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue. Dalton Trans. 2020, 49, 14290–14296.

[121]

Jia, Y. T.; Xu, Z. K.; Li, L.; Lin, S. Y. Formation of NiFe-MOF nanosheets on Fe foam to achieve advanced electrocatalytic oxygen evolution. Dalton Trans. 2022, 51, 5053–5060.

[122]

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

[123]

Chen, X. D.; Chen, Y.; Shen, Z. F.; Song, C. Y.; Ji, P. Y.; Wang, N. N.; Su, D. W.; Wang, Y. G.; Wang, G. X.; Cui, L. F. Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2020, 529, 147173.

[124]

Jiang, W.; Ni, X. J.; Liu, F. Exotic topological bands and quantum states in metal-organic and covalent-organic frameworks. Acc. Chem. Res. 2021, 54, 416–426.

[125]

Yang, D. R.; Wang, X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat. 2022, 3, 54–67.

[126]

Liu, X. H.; Yang, Y. W.; Liu, X. M.; Hao, Q.; Wang, L. M.; Sun, B.; Wu, J.; Wang, D. Confined synthesis of oriented two-dimensional Ni3(hexaiminotriphenylene)2 films for electrocatalytic oxygen evolution reaction. Langmuir 2020, 36, 7528–7532.

[127]

Wang, J. R.; Fan, Y. C.; Qi, S. Y.; Li, W. F.; Zhao, M. W. Bifunctional HER/OER or OER/ORR catalytic activity of two-dimensional TM3(HITP)2 with TM = Fe-Zn. J. Phys. Chem. C 2020, 124, 9350–9359.

[128]

Li, C.; Shi, L. L.; Zhang, L. L.; Chen, P.; Zhu, J. W.; Wang, X.; Fu, Y. S. Ultrathin two-dimensional π-d conjugated coordination polymer Co3(Hexaaminobenzene)2 nanosheets for highly efficient oxygen evolution. J. Mater. Chem. A 2020, 8, 369–379.

[129]

Li, C.; Gao, Y. T.; Xia, X. F.; Zhu, J. W.; Wang, X.; Fu, Y. S. Hierarchically structured two-dimensional bimetallic CoNi-hexaaminobenzene coordination polymers derived from Co(OH)2 for enhanced oxygen evolution catalysis. Small 2020, 16, 1907043.

[130]

Yang, S. X.; Yu, Y. H.; Gao, X. J.; Zhang, Z. P.; Wang, F. Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 2021, 50, 12985–13011.

[131]

Jia, H. X.; Yao, Y. C.; Zhao, J. T.; Gao, Y. Y.; Luo, Z. L.; Du, P. W. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A 2018, 6, 1188–1195.

[132]

Jayaramulu, K.; Masa, J.; Morales, D. M.; Tomanec, O.; Ranc, V.; Petr, M.; Wilde, P.; Chen, Y. T.; Zboril, R.; Schuhmann, W. et al. Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution. Adv. Sci. 2018, 5, 1801029.

[133]

Xiao, Z. J.; Xu, F. A two-dimensional zeolitic imidazolate framework loaded with an acrylate-substituted oxoiron cluster as an efficient electrocatalyst for the oxygen evolution reaction. New J. Chem. 2022, 46, 11095–11100.

[134]

Li, D. J.; Li, Q. H.; Gu, Z. G.; Zhang, J. A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 18519–18528.

[135]

Guo, C. X.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S. Z. Intermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysis. Chem 2019, 5, 2429–2441.

[136]

Chi, Y.; Yang, W. P.; Xing, Y. C.; Li, Y.; Pang, H.; Xu, Q. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale 2020, 12, 10685–10692.

[137]

Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.

[138]

Zou, Z. H.; Wang, J. L.; Pan, H. R.; Li, J.; Guo, K. L.; Zhao, Y. Q.; Xu, C. L. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating. J. Mater. Chem. A 2020, 8, 14099–14105.

[139]

Cong, J. K.; Xu, H.; Lu, M. T.; Wu, Y. H.; Li, Y. W.; He, P. P.; Gao, J. K.; Yao, J. M.; Xu, S. Q. Two-dimensional Co@N-carbon nanocomposites facilely derived from metal-organic framework nanosheets for efficient bifunctional electrocatalysis. Chem. Asian J. 2018, 13, 1485–1491.

[140]

Wei, X. D.; Li, N.; Liu, N. Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting. Electrochim. Acta 2019, 318, 957–965.

[141]

He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

[142]

Liu, J. L.; Gao, Y.; Tang, X. X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y. Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8, 19254–19261.

[143]

Xia, Q. H.; Liu, H. M.; Jin, M. M.; Lai, L. F.; Qiu, Y. T.; Zhai, H. L.; Li, H. B.; Liu, X. Catalysts confined inside CNTS derived from 2D metal-organic frameworks for electrolysis. Nanoscale 2020, 12, 8969–8974.

[144]

Tian, J. Y.; Jiang, F. L.; Yuan, D. Q.; Zhang, L. J.; Chen, Q. H.; Hong, M. C. Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 13101–13108.

[145]

Chen, W. B.; Wang, C. S.; Su, S. B.; Wang, H.; Cai, D. D. Synthesis of ZIF-9(III)/Co LDH layered composite from ZIF-9(I) based on controllable phase transition for enhanced electrocatalytic oxygen evolution reaction. Chem. Eng. J 2021, 414, 128784.

[146]

Li, Y. L.; Jia, B. M.; Chen, B. Y.; Liu, Q. L.; Cai, M. K.; Xue, Z. Q.; Fan, Y. N.; Wang, H. P.; Su, C. Y.; Li, G. Q. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Trans. 2018, 47, 14679–14685.

[147]

Lin, Y. F.; Chen, G.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z. 2D free-standing nitrogen-doped Ni-Ni3S2@carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction. Small 2019, 15, 1900348.

[148]

Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2017, 29, 1605957.

[149]

Wang, C.; Shang, H. Y.; Wang, Y.; Li, J.; Guo, S. Y.; Guo, J.; Du, Y. K. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis. Nanoscale 2021, 13, 7279–7284.

[150]

Chen, W. X.; Zhang, Y. W.; Chen, G. L.; Huang, R.; Wu, Y. J.; Zhou, Y. M.; Hu, Y. J.; Ostrikov, K. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. J. Colloid Interface Sci. 2020, 560, 426–435.

[151]

Jiang, Q. Y.; Xu, J.; Li, Z. Q.; Zhou, C. H.; Chen, X.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, Y. Q. et al. Two-dimensional metal-organic framework nanosheet supported noble metal nanocrystals for high-efficiency water oxidation. Adv. Mater. Interfaces 2021, 8, 2002034.

[152]

Yu, R.; Liu, D. M.; Yuan, M. Y.; Wang, Y.; Ye, C. Q.; Li, J.; Du, Y. K. Universal MOF-mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 602, 612–618.

[153]

Lu, Z. J.; Wang, K.; Cao, Y. L.; Li, Y. Z.; Jia, D. Z. Amino-functionalized iron-based MOFs modified with 2D FeCo(OH)x hybrids for boosting oxygen evolution. J. Alloys Compd. 2021, 871, 159580.

[154]

Zhang, W. D.; Yu, H.; Li, T.; Hu, Q. T.; Gong, Y.; Zhang, D. Y.; Liu, Y.; Fu, Q. T.; Zhu, H. Y.; Yan, X. D. et al. Hierarchical trimetallic layered double hydroxide nanosheets derived from 2D metal-organic frameworks for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2020, 264, 118532.

[155]

Wang, Y. R.; Wang, A.; Xue, Z. Z.; Wang, L.; Li, X. Y.; Wang, G. M. Ultrathin metal-organic framework nanosheet arrays and derived self-supported electrodes for overall water splitting. J. Mater. Chem. A 2021, 9, 22597–22602.

[156]

Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

[157]

Liu, H. B.; Huang, R.; Chen, W. X.; Zhang, Y. W.; Wang, M. M.; Hu, Y. J.; Zhou, Y. M.; Song, Y. C. Porous 2D cobalt-nickel phosphide triangular nanowall architecture assembled by 3D microsphere for enhanced overall water splitting. Appl. Surf. Sci. 2021, 569, 150762.

[158]

Zhao, M.; Li, W.; Li, J. Y.; Hu, W. H.; Li, C. M. Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 2020, 7, 2001965.

[159]

Chen, B.; Kim, D.; Zhang, Z.; Lee, M.; Yong, K. MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 422, 130533.

[160]

Xu, S. X.; Du, J.; Li, J. Y.; Sun, L. C.; Li, F. Nickel-selenide templated binary metal-organic frameworks for efficient water oxidation. J. Mater. Chem. A 2020, 8, 16908–16912.

[161]

Bian, J. L.; Song, Z. Y.; Li, X. L.; Zhang, Y. Z.; Cheng, C. W. Nickel iron phosphide ultrathin nanosheets anchored on nitrogen-doped carbon nanoflake arrays as a bifunctional catalyst for efficient overall water splitting. Nanoscale 2020, 12, 8443–8452.

[162]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[163]

Zheng, W. R.; Lee, L. Y. S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst. ACS Energy Lett. 2021, 6, 2838–2843.

[164]

Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.

[165]

Zhu, D. D.; Liu, J. L.; Wang, L.; Du, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. A 2D metal-organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction. Nanoscale 2019, 11, 3599–3605.

[166]

Zheng, F. Q.; Zhang, W. F.; Zhang, X. X.; Zhang, Y. L.; Chen, W. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103318.

[167]

Han, C.; Zhong, L.; Sun, Q. H.; Chen, D. D.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Electrochemical evolution of cobalt-carboxylate framework for efficient water oxidation. J. Power Sources 2021, 499, 229947.

[168]

Cui, C.; Wang, J. Y.; Luo, Z. G.; Wang, J.; Li, C. X.; Li, Z. Q. MOF-mediated synthesis of monodisperse Co(OH)2 flower-like nanosheets for enhanced oxygen evolution reaction. Electrochim. Acta 2018, 273, 327–334.

[169]

Chen, D.; Yu, J. H.; Cui, Z. X.; Zhang, Q.; Chen, X.; Sui, J.; Dong, H. Z.; Yu, L. Y.; Dong, L. F. Hierarchical architecture derived from two-dimensional zeolitic imidazolate frameworks as an efficient metal-based bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Electrochim. Acta 2020, 331, 135394.

[170]

Chen, W. X.; Zhang, Y. W.; Chen, G. L.; Huang, R.; Zhou, Y. M.; Wu, Y. J.; Hu, Y. J.; Ostrikov, K. Mesoporous cobalt-iron-organic frameworks: A plasma-enhanced oxygen evolution electrocatalyst. J. Mater. Chem. A 2019, 7, 3090–3100.

[171]

Rodenas, T.; Beeg, S.; Spanos, I.; Neugebauer, S.; Girgsdies, F.; Algara-Siller, G.; Schleker, P. P. M.; Jakes, P.; Pfänder, N.; Willinger, M. et al. 2D metal organic framework-graphitic carbon nanocomposites as precursors for high-performance O2-evolution electrocatalysts. Adv. Energy Mater. 2018, 8, 1802404.

[172]

Wei, G. J.; Zhou, Z.; Zhao, X. X.; Zhang, W. Q.; An, C. H. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 23721–23730.

[173]

He, P. C.; Xie, Y. B.; Dou, Y. B.; Zhou, J.; Zhou, A. W.; Wei, X.; Li, J. R. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 41595–41601.

[174]

Zhao, J. Y.; Wang, R.; Wang, S.; Lv, Y. R.; Xu, H.; Zang, S. Q. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 2019, 7, 7389–7395.

[175]

Zhai, M. K.; Wang, F.; Du, H. B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Appl. Mater. Interfaces 2017, 9, 40171–40179.

[176]

Wang, H. W.; Li, Y. J.; Wang, R.; He, B. B.; Gong, Y. S. Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting. Electrochim. Acta 2018, 284, 504–512.

[177]

Xia, Z. X.; Fang, J.; Zhang, X. M.; Fan, L. P.; Barlow, A. J.; Lin, T.; Wang, S. L.; Wallace, G. G.; Sun, G. Q.; Wang, X. G. Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 2019, 245, 389–398.

[178]

Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 2009, 131, 15834–15842.

[179]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H.; He, C. X. Grain boundaries engineering of hollow copper nanoparticles enables highly efficient ammonia electrosynthesis from nitrate. CCS Chem. 2022, 4, 2053–2064.

[180]

Dai, F. N.; Wang, X. K.; Zheng, S. H.; Sun, J. P.; Huang, Z. D.; Xu, B.; Fan, L. L.; Wang, R. M.; Sun, D. F.; Wu, Z. S. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. Chem. Eng. J. 2021, 413, 127520.

[181]

Wang, L. J.; Saji, S. E.; Wu, L. J.; Wang, Z. X.; Chen, Z. J.; Du, Y. P.; Yu, X. F.; Zhao, H. T.; Yin, Z. Y. Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits. Small 2022, 18, 2201642.

[182]

Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

[183]

Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

[184]

Gao, G. P.; Waclawik, E. R.; Du, A. J. Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. J. Catal. 2017, 352, 579–585.

Nano Research
Pages 8614-8637
Cite this article:
Xu H, Wei X, Zeng H, et al. Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution. Nano Research, 2023, 16(7): 8614-8637. https://doi.org/10.1007/s12274-023-5576-3
Topics:

1046

Views

12

Crossref

16

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 29 December 2022
Revised: 09 February 2023
Accepted: 13 February 2023
Published: 02 April 2023
© Tsinghua University Press 2023
Return