Journal Home > Volume 16 , Issue 7

Aqueous zinc-ion batteries (ZIBs) have attracted increasing attention due to their low cost and high safety. MoS2 is a promising cathode material for aqueous ZIBs due to its favorable Zn2+ accommodation ability. However, the structural strain and large volume changes during intercalation/deintercalation lead to exfoliation of active materials from substrate and cause irreversible capacity fading. In this work, a highly stable cathode was developed by designing a hierarchical carbon nanosheet-confined defective MoSx material (CNS@MoSx). This cathode material exhibits an excellent cycling stability with high capacity retention of 88.3% and ~ 100% Coulombic efficiency after 400 cycles at 1.2 A·g−1, much superior compared to bare MoS2. Density functional theory (DFT) calculations combined with experiments illustrate that the promising electrochemical properties of CNS@MoSx are due to the unique porous conductive structure of CNS with abundant active sites to anchor MoSx via strong chemical bonding, enabling MoSx to be firmly confined on the substrate. Moreover, this unique hierarchical complex structure ensures the fast migration of Zn2+ within MoSx interlayer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical carbon nanosheet confined defective MoSx cathode towards long-cycling zinc-ion-battery

Show Author's information Xiaoqi Wang1,3Shimeng Zhang2Rui Yang3Shengchi Bai3Jianbo Li2Yu Wu2Bowen Jin2( )Xu Jin3Mingfei Shao2Bo Wang1( )
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Research Center of New Energy, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Abstract

Aqueous zinc-ion batteries (ZIBs) have attracted increasing attention due to their low cost and high safety. MoS2 is a promising cathode material for aqueous ZIBs due to its favorable Zn2+ accommodation ability. However, the structural strain and large volume changes during intercalation/deintercalation lead to exfoliation of active materials from substrate and cause irreversible capacity fading. In this work, a highly stable cathode was developed by designing a hierarchical carbon nanosheet-confined defective MoSx material (CNS@MoSx). This cathode material exhibits an excellent cycling stability with high capacity retention of 88.3% and ~ 100% Coulombic efficiency after 400 cycles at 1.2 A·g−1, much superior compared to bare MoS2. Density functional theory (DFT) calculations combined with experiments illustrate that the promising electrochemical properties of CNS@MoSx are due to the unique porous conductive structure of CNS with abundant active sites to anchor MoSx via strong chemical bonding, enabling MoSx to be firmly confined on the substrate. Moreover, this unique hierarchical complex structure ensures the fast migration of Zn2+ within MoSx interlayer.

Keywords: hierarchical structure, aqueous zinc-ion batteries, porous carbon nanosheets, long-cycling, MoSx cathode

References(44)

[1]

Huang, M.; Wang, X. P.; Liu, X.; Mai, L. Q. Fast ionic storage in aqueous rechargeable batteries: From fundamentals to applications. Adv. Mater. 2022, 34, 2105611.

[2]

Liu, F.; Li, L.; Xu, S. H.; Guo, J. B.; Ling, Y.; Zhang, Y. Y.; Gong, W. B.; Wei, L.; Wang, C. L.; Zhang, Q. C. et al. Cobalt-doped MoS2·nH2O nanosheets induced heterogeneous phases as high-rate capability and long-term cyclability cathodes for wearable zinc–ion batteries. Energy Storage Mater. 2023, 55, 1–11.

[3]

Li, M.; Li, Z. L.; Wang, X. P.; Meng, J. S.; Liu, X.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials. Energy Environ. Sci. 2021, 14, 3796–3839.

[4]

Fu, N.; Xu, Y. T.; Zhang, S.; Deng, Q.; Liu, J.; Zhou, C. J.; Wu, X. W.; Guo, Y. G.; Zeng, X. X. Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. J. Energy Chem. 2022, 67, 563–584.

[5]

Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

[6]

Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949.

[7]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[8]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[9]

Zampardi, G.; La Mantia, F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 2022, 13, 687.

[10]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[11]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, W. Jr. ; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. 2021, 133, 7289–7295.

[12]

Chen, D.; Lu, M. J.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 712–726.

[13]

Li, Y. H.; Dong, X. F.; Xu, Z. W.; Wang, M. L.; Wang, R. F.; Xie, J.; Ding, Y. J.; Su, P. C.; Jiang, C. Y.; Zhang, X. M. et al. Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage. Adv. Mater. 2023, 35, 2208615.

[14]

Huang, Q. K.; Zhong, X. W.; Zhang, Q.; Wu, X.; Jiao, M. L.; Chen, B.; Sheng, J. Z.; Zhou, G. M. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries. J. Energy Chem. 2022, 68, 679–687.

[15]

Jiao, M. L.; Zhang, Q.; Ye, C. L.; Liu, Z. B.; Zhong, X. W.; Wang, J. X.; Li, C.; Dai, L. X.; Zhou, G. M.; Cheng, H. M. Recycling spent LiNi1−xyMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. Proc. Natl. Acad. Sci. USA 2022, 119, e2202202119.

[16]

Jiao, M. L.; Zhang, Q.; Ye, C. L.; Gao, R. H.; Dai, L. X.; Zhou, G. M.; Cheng, H. M. Isolating contiguous Fe atoms by forming a Co-Fe intermetallic catalyst from spent lithium-ion batteries to regulate activity for zinc-air batteries. ACS Nano 2022, 16, 13223–13231.

[17]

Li, Y.; Wang, Z. H.; Cai, Y.; Pam, M. E.; Yang, Y. K.; Zhang, D. H.; Wang, Y.; Huang, S. Z. Designing advanced aqueous zinc-ion batteries: Principles, strategies, and perspectives. Energy Environ. Mater. 2022, 5, 823–851.

[18]

Liu, H. Y.; Wang, J. G.; Hua, W.; You, Z. Y.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater. 2021, 35, 731–738.

[19]

Cui, B. W.; Cai, X. M.; Wang, W. Q.; Saha, P.; Wang, G. C. Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. J. Energy Chem. 2022, 66, 91–99.

[20]

Jiang, D. T.; Liu, Z. Y.; Xiao, Z.; Qian, Z. F.; Sun, Y. L.; Zeng, Z. Y.; Wang, R. H. Flexible electronics based on 2D transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 89–121.

[21]

Jin, Y. Q.; Chen, H. Z.; Peng, L. H.; Chen, Z. H.; Cheng, L.; Song, J. D.; Zhang, H.; Chen, J.; Xie, F. Y.; Jin, Y. S. et al. Interfacial polarization triggered by glutamate accelerates dehydration of hydrated zinc ions for zinc-ion batteries. Chem. Eng. J. 2021, 416, 127704.

[22]

Jin, J.; Xiao, T.; Zhang, Y. F.; Zheng, H.; Wang, H. W.; Wang, R.; Gong, Y. S.; He, B. B.; Liu, X. H.; Zhou, K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale 2021, 13, 19740–19770.

[23]

Yao, Z. Y.; Zhang, W.; Ren, X. C.; Yin, Y. R.; Zhao, Y. X.; Ren, Z. G.; Sun, Y. H.; Lei, Q.; Wang, J.; Wang, L. H. et al. A volume self-regulation MoS2 superstructure cathode for stable and high mass-loaded Zn-ion storage. ACS Nano 2022, 16, 12095–12106.

[24]

Liu, L.; Yang, W. J.; Chen, H. D.; Chen, X. T.; Zhang, K. Q.; Zeng, Q.; Lei, S. L.; Huang, J. J.; Li, S. J.; Peng, S. L. High zinc-ion intercalation reaction activity of MoS2 cathode based on regulation of thermodynamic metastability and interlayer water. Electrochim. Acta 2022, 410, 140016.

[25]

Li, S. W.; Liu, Y. C.; Zhao, X. D.; Cui, K. X.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. 2021, 133, 20448–20455.

[26]

Sheng, Z. W.; Qi, P. C.; Lu, Y.; Liu, G. F.; Chen, M. Y.; Gan, X. L.; Qin, Y. H.; Hao, K. Y.; Tang, Y. W. Nitrogen-doped metallic MoS2 derived from a metal-organic framework for aqueous rechargeable zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 34495–34506.

[27]

Liang, H. F.; Cao, Z.; Ming, F. W.; Zhang, W. L.; Anjum, D. H.; Cui, Y.; Cavallo, L.; Alshareef, H. N. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019, 19, 3199–3206.

[28]

Dong, Y. R.; Zhu, Z. J.; Hu, Y. J.; He, G. J.; Sun, Y.; Cheng, Q. L.; Parkin, I. P.; Jiang, H. Supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays with enhanced sodium storage capability. Nano Res. 2021, 14, 74–80.

[29]

Shao, F.; Huang, Y. F.; Wang, X. L.; Li, Z. J.; Huang, X. D.; Huang, W. T.; Dong, L. B.; Kang, F. Y.; Liu, W. B.; Xu, C. J. MoS2 with high 1T phase content enables fast reversible zinc-ion storage via pseudocapacitance. Chem. Eng. J. 2022, 448, 137688.

[30]

Cai, C. Y.; Tao, Z. R.; Zhu, Y. F.; Tan, Y. M.; Wang, A. D.; Zhou, H. Y.; Yang, Y. Y. A nano interlayer spacing and rich defect 1T-MoS2 as cathode for superior performance aqueous zinc-ion batteries. Nanoscale Adv. 2021, 3, 3780–3787.

[31]

Liu, J. P.; Gong, N.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Vertically aligned 1T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chem. Eng. J. 2022, 428, 130981.

[32]

Liu, J. P.; Xu, P. T.; Liang, J. M.; Liu, H. B.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chem. Eng. J. 2020, 389, 124405.

[33]

Cao, P. F.; Chen, N.; Tang, W. J.; Liu, Y. T.; Xia, Y.; Wu, Z. Z.; Li, F. Z.; Liu, Y. J.; Sun, A. K. Template-assisted hydrothermal synthesized hydrophilic spherical 1T-MoS2 with excellent zinc storage performance. J. Alloys Compd. 2022, 898, 162854.

[34]

Li, S. W.; Huang, C.; Gao, L.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F.; Liu, Y. C. Unveiling the “proton lubricant” chemistry in aqueous zinc-MoS2 batteries. Angew. Chem. 2022, 134, e202211478.

[35]

Long, F.; Zhang, Q. X.; Shi, J. J.; Wen, L.; Wu, Y. H.; Ren, Z. Q.; Liu, Z. Y.; Hou, Y. X.; Mao, K.; Niu, K. et al. Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1 T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J. 2023, 455, 140539.

[36]

Li, C. W.; Liu, C.; Wang, Y.; Lu, Y. S.; Zhu, L.; Sun, T. Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries. Energy Storage Mater. 2022, 49, 144–152.

[37]

Li, S. W.; Liu, Y. C.; Zhao, X. D.; Shen, Q. Y.; Zhao, W.; Tan, Q. W.; Zhang, N.; Li, P.; Jiao, L. F.; Qu, X. H. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480.

[38]

Huang, M. H.; Mai, Y. J.; Zhao, L. J.; Liang, X. H.; Fang, Z. J.; Jie, X. H. Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. Electrochim. Acta 2021, 388, 138624.

[39]

Niu, F. E.; Bai, Z. C.; Mao, Y. Y.; Zhang, S. Q.; Yan, H. R.; Xu, X.; Chen, J. M.; Wang, N. N. Rational design of MWCNTs@amorphous carbon@MoS2: Towards high performance cathode for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 453, 139933.

[40]

Yao, X. C.; Li, C. L.; Xiao, R.; Li, J. Q.; Yang, H.; Deng, J. Q.; Balogun, M. S. Heterostructures stimulate electic-field to facilitate optimal Zn2+ intercalation in MoS2 cathode. Small 2022, 18, 2204534.

[41]

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived n-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

[42]

Qiao, Y.; Wu, J. W.; Cheng, X. G.; Pang, Y. D.; Lu, Z. S.; Lou, X. D.; Li, Q. L.; Zhao, J.; Yang, S. T.; Liu, Y. Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries. J. Energy Chem. 2020, 48, 435–442.

[43]

Jing, L. Y.; Sun, J. W.; Sun, C. Y.; Wu, D.; Lian, G.; Cui, D. L.; Wang, Q. L.; Yu, H. H. MoS2-intercalated carbon hetero-layers bonded on graphene as electrode materials for enhanced sodium/potassium ion storage. Nano Res. 2023, 16, 473–480.

[44]
Puglia, M. K.; Malhotra, M.; Chivukula, A.; Kumar, C. V. “Simple-stir” heterolayered MoS2/graphene nanosheets for Zn-air batteries. ACS Appl. Nano Mater. 2021, 4, 10389–10398.
File
12274_2023_5572_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 April 2022
Revised: 09 February 2023
Accepted: 13 February 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China (Nos. 21922501, 21625102, and 21471018), the China National Petroleum Corporation Research Fund Program, and the Research Institute of Petroleum Exploration and Development Research Fund Program.

Return