AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

LAT1 targeted brain delivery of temozolomide and sorafenib for effective glioma therapy

Yufei Zhang1,§Qian Cheng2,§Yuhao Xue3Kai Yao4Madiha Zahra Syeda5Jian Xu6Jianheng Wu5Zhenjie Wang5( )Longguang Tang6( )Qingchun Mu5( )
Department of Physiology, Basic Medical College, Guilin Medical University, Guilin 541199, China
College of Pharmacy, Guilin Medical University, Guilin 541199, China
College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Affiliated Gaozhou People’s Hospital, Guangdong Medical University, Maoming 525200, China
International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China

§ Yufei Zhang and Qian Cheng contributed equally to this work.

Show Author Information

Graphical Abstract

L-type amino acid transporter 1 (LAT1)-targeting nanoparticles co-loaded with temozolomide (TMZ) and sorafenib (L-STNPs) were developed to cross blood-brain barrier and induce ferroptosis and apoptosis.

Abstract

Glioma is the most common primary craniocerebral tumor caused by the cancerous growth of glial cells in the brain and spinal cord. Currently, standard treatment is the surgical resection followed by concurrent radiation and chemotherapy. However, the blood-brain barrier (BBB) prevents most antitumor drugs from entering the brain and reduces their efficacy, especially in low-grade glioma. Since L-type amino acid transporter 1 (LAT1) is highly expressed in glioma cells and mediates drug transport across the BBB, it is a promising target for drug delivery and treatment of glioma. Temozolomide (TMZ) is the first-line treatment for glioma, however, patients often exhibit drug resistance at advanced stage. A multikinase inhibitor and inducer of ferroptosis, sorafenib can improve the therapeutic effects of TMZ. Therefore, to optimize the glioma treatment and cross the BBB, we designed LAT1-targeting nanoparticles co-loaded with TMZ and sorafenib. Our results from both in vitro and in vivo studies confirmed that LAT1-targeting nanoparticles significantly increased the cellular uptake, cytotoxicity, accumulation at tumor site, and the anti-tumor efficacy compared to the non-target nanoparticles. Therefore, LAT1 can be used as a potential target for brain-targeted drug delivery, and sorafenib-induced ferroptosis can aid the anti-glioma efficacy of TMZ.

Electronic Supplementary Material

Download File(s)
12274_2023_5568_MOESM1_ESM.pdf (622.9 KB)

References

[1]

Tan, A. C.; Ashley, D. M.; López, G. Y.; Malinzak, M.; Friedman, H. S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312.

[2]

Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S. M.; Nishikawa, R.; Rosenthal, M.; Wen, P. Y.; Stupp, R. et al. Glioma. Nat. Rev. Dis. Primers 2015, 1, 15017.

[3]

Lin, T. T.; Zhao, P. F.; Jiang, Y. F.; Tang, Y. S.; Jin, H. Y.; Pan, Z. Z.; He, H. N.; Yang, V. C.; Huang, Y. Z. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016, 10, 9999–10012.

[4]

Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.

[5]

Lefranc, F.; Facchini, V.; Kiss, R. Proautophagic drugs: A novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 2007, 12, 1395–1403.

[6]

Choi, S.; Yu, Y.; Grimmer, M. R.; Wahl, M.; Chang, S. M.; Costello, J. F. Temozolomide-associated hypermutation in gliomas. Neuro Oncol. 2018, 20, 1300–1309.

[7]

Mou, Y. H.; Wang, J.; Wu, J. C.; He, D.; Zhang, C. F.; Duan, C. J.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol. 2019, 12, 34.

[8]

Battaglia, A. M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and cancer: Mitochondria meet the “Iron Maiden” cell death. Cells 2020, 9, 1505.

[9]

Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D. A.; Van Den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896.

[10]

Cheng, J.; Fan, Y. Q.; Liu, B. H.; Zhou, H.; Wang, J. M.; Chen, Q. X. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol. Rep. 2020, 43, 147–158.

[11]

Fan, Z.; Wirth, A. K.; Chen, D.; Wruck, C. J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017, 6, e371.

[12]

Ganapathy, V.; Thangaraju, M.; Prasad, P. D. Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 2009, 121, 29–40.

[13]

Li, L.; Di, X. S.; Wu, M. R.; Sun, Z. S.; Zhong, L.; Wang, Y. J.; Fu, Q.; Kan, Q. M.; Sun, J.; He, Z. G. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy. Nanomed. Nanotechnol., Biol. Med. 2017, 13, 987–998.

[14]

Liu, Y. Y.; Ran, R.; Chen, J. T.; Kuang, Q. F.; Tang, J.; Mei, L.; Zhang, Q. Y.; Gao, H. L.; Zhang, Z. R.; He, Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 2014, 35, 4835–4847.

[15]

Long, G. V.; Dummer, R.; Hamid, O.; Gajewski, T. F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M. S.; Grob, J. J.; Kim, T. M. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097.

[16]

Xu, J. Q.; Li, G.; Wang, Z. Y.; Si, L. Q.; He, S. J.; Cai, J. L.; Huang, J. G.; Donovan, M. D. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues. Chemosphere 2016, 145, 487–494.

[17]

Roberts, L. M.; Black, D. S.; Raman, C.; Woodford, K.; Zhou, M.; Haggerty, J. E.; Yan, A. T.; Cwirla, S. E.; Grindstaff, K. K. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 2008, 155, 423–438.

[18]

Bhunia, S.; Vangala, V.; Bhattacharya, D.; Ravuri, H. G.; Kuncha, M.; Chakravarty, S.; Sistla, R.; Chaudhuri, A. Large amino acid transporter 1 selective liposomes of L-DOPA functionalized amphiphile for combating glioblastoma. Mol. Pharmaceutics 2017, 14, 3834–3847.

[19]

Goldenberg, G. J.; Lam, H. Y.; Begleiter, A. Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. J. Biol. Chem. 1979, 254, 1057–1064.

[20]

Kageyama, T.; Nakamura, M.; Matsuo, A.; Yamasaki, Y.; Takakura, Y.; Hashida, M.; Kanai, Y.; Naito, M.; Tsuruo, T.; Minato, N. et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 2000, 879, 115–121.

[21]

Sharma, R. K.; Calderon, C.; Vivas-Mejia, P. E. Targeting non-coding RNA for glioblastoma therapy: The challenge of overcomes the blood-brain barrier. Front. Med. Technol. 2021, 3, 678593.

[22]

Zhu, L. W.; You, Y. C.; Zhu, M. X.; Song, Y. L.; Zhang, J. C.; Hu, J. H.; Xu, X. Y.; Xu, X. L.; Du, Y. Z.; Ji, J. S. Ferritin-hijacking nanoparticles spatiotemporally directing endogenous ferroptosis for synergistic anticancer therapy. Adv. Mater. 2022, 34, 2207174.

[23]

Bao, X.; Wu, J. M.; Xie, Y. M.; Kim, S.; Michelhaugh, S.; Jiang, J.; Mittal, S.; Sanai, N.; Li, J. Protein expression and functional relevance of efflux and uptake drug transporters at the blood-brain barrier of human brain and glioblastoma. Clin. Pharmacol. Ther. 2020, 107, 1116–1127.

[24]

Zhu, Y.; Liang, J. M.; Gao, C. F.; Wang, A. N.; Xia, J. X.; Hong, C.; Zhong, Z. R.; Zuo, Z.; Kim, J.; Ren, H. W. et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Controlled Release 2021, 330, 641–657.

[25]

Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. (Weinh.) 2017, 4, 1600124.

[26]

Xu, Y.; Li, Y. T.; Li, J. X.; Chen, W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox. Biol. 2022, 53, 102349.

[27]

Doll, S.; Proneth, B.; Tyurina, Y. Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017, 13, 91–98.

[28]

Hirschhorn, T.; Stockwell, B. R. The development of the concept of ferroptosis. Free Radical Biol. Med. 2019, 133, 130–143.

[29]

Wang, Z. J.; Lin, X. X.; Chi, D. X.; Xu, Z. C.; Lin, G. M.; Liu, H. Z.; Sun, J.; He, Z. G.; Wang, Y. J. Single-ligand dual-targeting irinotecan liposomes: Control of targeting ligand display by pH-responsive PEG-shedding strategy to enhance tumor-specific therapy and attenuate toxicity. Int. J. Pharm. 2020, 587, 119680.

[30]

Marinelli, L.; Ciulla, M.; Ritsema, J. A. S.; Van Nostrum, C. F.; Cacciatore, I.; Dimmito, M. P.; Palmerio, F.; Orlando, G.; Robuffo, I.; Grande, R. et al. Preparation, characterization, and biological evaluation of a hydrophilic peptide loaded on PEG-PLGA nanoparticles. Pharmaceutics 2022, 14, 1821.

Nano Research
Pages 9743-9751
Cite this article:
Zhang Y, Cheng Q, Xue Y, et al. LAT1 targeted brain delivery of temozolomide and sorafenib for effective glioma therapy. Nano Research, 2023, 16(7): 9743-9751. https://doi.org/10.1007/s12274-023-5568-3
Topics:

1145

Views

5

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 05 January 2023
Revised: 07 February 2023
Accepted: 09 February 2023
Published: 11 April 2023
© Tsinghua University Press 2023
Return