Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are becoming powerful tools for disease biomarkers detection. Due to the specific recognition, cis-cleavage and nonspecific trans-cleavage capabilities, CRISPR/Cas systems have implemented the detection of nucleic acid targets (DNA and RNA) as well as non-nucleic acid targets (e.g., proteins, exosomes, cells, and small molecules). In this review, we first summarize the principles and characteristics of various CRISPR/Cas systems, including CRISPR/Cas9, Cas12, Cas13 and Cas14 systems. Then, various types of applications of CRISPR/Cas systems used in detecting nucleic and non-nucleic acid targets are introduced emphatically. Finally, the prospects and challenges of their applications in biosensing are discussed.
Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011, 45, 273–297.
Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.
Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308.
Shalem, O.; Sanjana, N. E.; Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015, 16, 299–311.
Wiedenheft, B.; Sternberg, S. H.; Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331–338.
Hilton, I. B.; D'Ippolito, A. M.; Vockley, C. M.; Thakore, P. I.; Crawford, G. E.; Reddy, T. E.; Gersbach, C. A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517.
Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler, P.; Dy, A. J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N. M.; Freije, C. A. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442.
Terns, M. P.; Terns, R. M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 2011, 14, 321–327.
Deltcheva, E.; Chylinski, K.; Sharma, C. M.; Gonzales, K.; Chao, Y. J.; Pirzada, Z. A.; Eckert, M. R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607.
Knott, G. J.; Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869.
Mali, P.; Yang, L. H.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826.
Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477.
Makarova, K. S.; Wolf, Y. I.; Iranzo, J.; Shmakov, S. A.; Alkhnbashi, O. S.; Brouns, S. J. J.; Charpentier, E.; Cheng, D.; Haft, D. H.; Horvath, P. et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83.
Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf, Y. I. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182.
Makarova, K. S.; Zhang, F.; Koonin, E. V. SnapShot: Class 2 CRISPR-Cas systems. Cell 2017, 168, 328–328.e1.
Shmakov, S.; Abudayyeh, O. O.; Makarova, K. S.; Wolf, Y. I.; Gootenberg, J. S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 2015, 60, 385–397.
Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah, S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Haft, D. H. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736.
Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G. T.; Mullis, K. B.; Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491.
Abravaya, K.; Carrino, J. J.; Muldoon, S.; Lee, H. H. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 1995, 23, 675–682.
Walker, G. T.; Little, M. C.; Nadeau, J. G.; Shank, D. D. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 1992, 89, 392–396.
Murakami, T.; Sumaoka, J.; Komiyama, M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res. 2009, 37, e19.
Kashir, J.; Yaqinuddin, A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med. Hypotheses 2020, 141, 109786.
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.
Gilbert, L. A.; Larson, M. H.; Morsut, L.; Liu, Z. R.; Brar, G. A.; Torres, S. E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E. H.; Doudna, J. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442–451.
Pardee, K.; Green, A. A.; Takahashi, M. K.; Braff, D.; Lambert, G.; Lee, J. W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M. et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 2016, 165, 1255–1266.
Jiang, F. G.; Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529.
Nishimasu, H.; Ran, F. A.; Hsu, P. D.; Konermann, S.; Shehata, S. I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949.
Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586.
O'Connell, M. R.; Oakes, B. L.; Sternberg, S. H.; East-Seletsky, A.; Kaplan, M.; Doudna, J. A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516, 263–266.
Dominguez, A. A.; Lim, W. A.; Qi, L. S. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell. Biol. 2016, 17, 5–15.
Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; Van Der Oost, J.; Regev, A. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771.
Fonfara, I.; Richter, H.; Bratovič, M.; Le Rhun, A.; Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016, 532, 517–521.
Swarts, D. C.; Van Der Oost, J.; Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 2017, 66, 221–233.e4.
Dong, D.; Ren, K.; Qiu, X. L.; Zheng, J. L.; Guo, M. H.; Guan, X. Y.; Liu, H. N.; Li, N. N.; Zhang, B. L.; Yang, D. J. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016, 532, 522–526.
Jamaspishvili, T.; Berman, D. M.; Ross, A. E.; Scher, H. I.; De Marzo, A. M.; Squire, J. A.; Lotan, T. L. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 2018, 15, 222–234.
Chen, J. S.; Ma, E. B.; Harrington, L. B.; Da Costa, M.; Tian, X. R.; Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439.
Pickar-Oliver, A.; Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507.
Li, S. Y.; Cheng, Q. X.; Liu, J. K.; Nie, X. Q.; Zhao, G. P.; Wang, J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018, 28, 491–493.
Yan, W. X.; Hunnewell, P.; Alfonse, L. E.; Carte, J. M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A. J.; Chong, S.; Makarova, K. S.; Koonin, E. V. et al. Functionally diverse type V CRISPR-Cas systems. Science 2019, 363, 88–91.
Strecker, J.; Jones, S.; Koopal, B.; Schmid-Burgk, J.; Zetsche, B.; Gao, L. Y.; Makarova, K. S.; Koonin, E. V.; Zhang, F. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 2019, 10, 212.
Teng, F.; Cui, T. T.; Feng, G. H.; Guo, L.; Xu, K.; Gao, Q. Q.; Li, T. D.; Li, J.; Zhou, Q.; Li, W. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018, 4, 63.
Liu, L.; Chen, P.; Wang, M.; Li, X. Y.; Wang, J. Y.; Yin, M. L.; Wang, Y. L. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 2017, 65, 310–322.
Cox, D. B. T.; Gootenberg, J. S.; Abudayyeh, O. O.; Franklin, B.; Kellner, M. J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027.
Abudayyeh, O. O.; Gootenberg, J. S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J. J.; Verdine, V.; Cox, D. B. T.; Kellner, M. J.; Regev, A. et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284.
Harrington, L. B.; Burstein, D.; Chen, J. S.; Paez-Espino, D.; Ma, E. B.; Witte, I. P.; Cofsky, J. C.; Kyrpides, N. C.; Banfield, J. F.; Doudna, J. A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842.
Aquino-Jarquin, G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine 2019, 18, 428–431.
Karvelis, T.; Bigelyte, G.; Young, J. K.; Hou, Z. L.; Zedaveinyte, R.; Budre, K.; Paulraj, S.; Djukanovic, V.; Gasior, S.; Silanskas, A. et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 2020, 48, 5016–5023.
Ma, E. B.; Harrington, L. B.; O'Connell, M. R.; Zhou, K. H.; Doudna, J. A. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes. Mol. Cell 2015, 60, 398–407.
Zhang, K. X.; Deng, R. J.; Teng, X. C.; Li, Y.; Sun, Y. P.; Ren, X. J.; Li, J. H. Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J. Am. Chem. Soc. 2018, 140, 11293–11301.
Lee, S. H.; Yu, J.; Hwang, G. H.; Kim, S.; Kim, H. S.; Ye, S.; Kim, K.; Park, J.; Park, D. Y.; Cho, Y. K. et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene 2017, 36, 6823–6829.
Huang, M. Q.; Zhou, X. M.; Wang, H. Y.; Xing, D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal. Chem. 2018, 90, 2193–2200.
Li, S. Y.; Cheng, Q. X.; Wang, J. M.; Li, X. Y.; Zhang, Z. L.; Gao, S.; Cao, R. B.; Zhao, G. P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20.
Li, L. X.; Li, S. Y.; Wu, N.; Wu, J. C.; Wang, G.; Zhao, G. P.; Wang, J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 2019, 8, 2228–2237.
Teng, F.; Guo, L.; Cui, T. T.; Wang, X. G.; Xu, K.; Gao, Q. Q.; Zhou, Q.; Li, W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019, 20, 132.
Taylor, D. W.; Zhu, Y. F.; Staals, R. H. J.; Kornfeld, J. E.; Shinkai, A.; Van Der Oost, J.; Nogales, E.; Doudna, J. A. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 2015, 348, 581–585.
Ackerman, C. M.; Myhrvold, C.; Thakku, S. G.; Freije, C. A.; Metsky, H. C.; Yang, D. K.; Ye, S. H.; Boehm, C. K.; Kosoko-Thoroddsen, T. S. F.; Kehe, J. et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582, 277–282.
Myhrvold, C.; Freije, C. A.; Gootenberg, J. S.; Abudayyeh, O. O.; Metsky, H. C.; Durbin, A. F.; Kellner, M. J.; Tan, A. L.; Paul, L. M.; Parham, L. A. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448.
Freije, C. A.; Myhrvold, C.; Boehm, C. K.; Lin, A. E.; Welch, N. L.; Carter, A.; Metsky, H. C.; Luo, C. Y.; Abudayyeh, O. O.; Gootenberg, J. S. et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 2019, 76, 826–837.e11.
Arizti-Sanz, J.; Freije, C. A.; Stanton, A. C.; Petros, B. A.; Boehm, C. K.; Siddiqui, S.; Shaw, B. M.; Adams, G.; Kosoko-Thoroddsen, T. S. F.; Kemball, M. E. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921.
Rauch, J. N.; Valois, E.; Solley, S. C.; Braig, F.; Lach, R. S.; Audouard, M.; Ponce-Rojas, J. C.; Costello, M. S.; Baxter, N. J.; Kosik, K. S. et al. A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material. J. Clin. Microbiol. 2021, 59, e02402–20.
Ponce-Rojas, J. C.; Costello, M. S.; Proctor, D. A.; Kosik, K. S.; Wilson, M. Z.; Arias, C.; Acosta-Alvear, D. A fast and accessible method for the isolation of RNA, DNA, and protein to facilitate the detection of SARS-CoV-2. J. Clin. Microbiol. 2021, 59, e02403–20.
Vangah, S. J.; Katalani, C.; Boone, H. A.; Hajizade, A.; Sijercic, A.; Ahmadian, G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol. Proced. Online 2020, 22, 22.
Guo, L.; Sun, X. H.; Wang, X. E.; Liang, C.; Jiang, H. P.; Gao, Q. Q.; Dai, M. Y.; Qu, B.; Fang, S.; Mao, Y. H. et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020, 6, 34.
Liu, T. Y.; Knott, G. J.; Smock, D. C. J.; Desmarais, J. J.; Son, S.; Bhuiya, A.; Jakhanwal, S.; Prywes, N.; Agrawal, S.; De León Derby, M. D. et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 2021, 17, 982–988.
Tian, T.; Shu, B. W.; Jiang, Y. Z.; Ye, M. M.; Liu, L.; Guo, Z. H.; Han, Z. P.; Wang, Z.; Zhou, X. M. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 2021, 15, 1167–1178.
Hajian, R.; Balderston, S.; Tran, T.; deBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N. A.; Chung, J. Y.; Nokes, J.; Athaiya, M. et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437.
Fozouni, P.; Son, S.; De León Derby, M. D.; Knott, G. J.; Gray, C. N.; D'Ambrosio, M. V.; Zhao, C. Y.; Switz, N. A.; Kumar, G. R.; Stephens, S. I. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9.
Dai, Y. F.; Somoza, R. A.; Wang, L.; Welter, J. F.; Li, Y.; Caplan, A. I.; Liu, C. C. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem., Int. Ed. 2019, 58, 17399–17405.
Xu, W.; Jin, T.; Dai, Y. F.; Liu, C. C. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens. Bioelectron. 2020, 155, 112100.
Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.
Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825.
Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.
Kim, H.; Lee, S.; Yoon, J.; Song, J.; Park, H. G. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens. Bioelectron. 2021, 194, 113587.
Chen, M. M.; Zhang, J. Y.; Peng, Y.; Bai, J. L.; Li, S.; Han, D. P.; Ren, S. Y.; Qin, K.; Zhou, H. Y.; Han, T. et al. Design and synthesis of DNA hydrogel based on EXPAR and CRISPR/Cas14a for ultrasensitive detection of creatine kinase MB. Biosens. Bioelectron. 2022, 218, 114792.
Lv, Z. X.; Wang, Q. Q.; Yang, M. H. Multivalent duplexed-aptamer networks regulated a CRISPR-Cas12a system for circulating tumor cell detection. Anal. Chem. 2021, 93, 12921–12929.
Ding, L. H.; Wu, Y.; Liu, L. E.; He, L. L.; Yu, S. C.; Effah, C. Y.; Liu, X.; Qu, L. B.; Wu, Y. J. Universal DNAzyme walkers-triggered CRISPR-Cas12a/Cas13a bioassay for the synchronous detection of two exosomal proteins and its application in intelligent diagnosis of cancer. Biosens. Bioelectron. 2023, 219, 114827.
Myers, S. A.; Wright, J.; Peckner, R.; Kalish, B. T.; Zhang, F.; Carr, S. A. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 2018, 15, 437–439.
Yi, W. K.; Li, J. Y.; Zhu, X. X.; Wang, X.; Fan, L. G.; Sun, W. J.; Liao, L. B.; Zhang, J. L.; Li, X. Y.; Ye, J. et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods 2020, 17, 685–688.
Zhao, X. X.; Zhang, W. Q.; Qiu, X. P.; Mei, Q.; Luo, Y.; Fu, W. L. Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal. Bioanal. Chem. 2020, 412, 601–609.
Ebright, R. Y.; Lee, S.; Wittner, B. S.; Niederhoffer, K. L.; Nicholson, B. T.; Bardia, A.; Truesdell, S.; Wiley, D. F.; Wesley, B.; Li, S. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020, 367, 1468–1473.
Xiong, Y.; Zhang, J. J.; Yang, Z. L.; Mou, Q. B.; Ma, Y.; Xiong, Y. H.; Lu, Y. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J. Am. Chem. Soc. 2020, 142, 207–213.
Samanta, D.; Ebrahimi, S. B.; Ramani, N.; Mirkin, C. A. Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 2022, 144, 16310–16315.
Peng, H. Y.; Newbigging, A. M.; Wang, Z. X.; Tao, J.; Deng, W. C.; Le, X. C.; Zhang, H. Q. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal. Chem. 2018, 90, 190–207.
Chen, Y. J.; Wu, H.; Qian, S. W. J.; Yu, X. P.; Chen, H.; Wu, J. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal. Chim. Acta 2022, 1192, 339356.
Li, Q.; Li, X. B.; Zhou, P. Y.; Chen, R.; Xiao, R.; Pang, Y. F. Split aptamer regulated CRISPR/Cas12a biosensor for 17β-estradiol through a gap-enhanced Raman tags based lateral flow strategy. Biosens. Bioelectron. 2022, 215, 114548.
Libis, V.; Delépine, B.; Faulon, J. L. Sensing new chemicals with bacterial transcription factors. Curr. Opin. Microbiol. 2016, 33, 105–112.
Liang, M. D.; Li, Z. L.; Wang, W. S.; Liu, J. K.; Liu, L. S.; Zhu, G. L.; Karthik, L.; Wang, M.; Wang, K. F.; Wang, Z. et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat. Commun. 2019, 10, 3672.
Li, F. Q.; Yu, Z. G.; Han, X. D.; Lai, R. Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta 2019, 1051, 1–23.
Hu, J. Y.; Song, H. J.; Zhou, J.; Liu, R.; Lv, Y. Metal-tagged CRISPR/Cas12a bioassay enables ultrasensitive and highly selective evaluation of kanamycin bioaccumulation in fish samples. Anal. Chem. 2021, 93, 14214–14222.
Hu, J. Y.; Zhou, J.; Liu, R.; Lv, Y. Element probe based CRISPR/Cas14 bioassay for non-nucleic-acid targets. Chem. Commun. 2021, 57, 10423–10426.