Journal Home > Volume 16 , Issue 5

Polydimethylsiloxane containing methacryloyloxy and methoxy silane groups (MAPDMS)-microcapsule-SiO2 (MPMS) functional materials were prepared by constructing micro-nano hierarchical structures on the surface of MAPDMS matrix. Herein, MAPDMS@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide/dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (MAPDMS@PGMAm/GO/QC18) self-healing microcapsules with compact multi-shell structure were synthesized and combined with nano-SiO2 to construct the hierarchical structures. Furthermore, ultraviolet (UV)/moisture dual curing mode was introduced into deep curing reaction and efficient self-healing reaction of the MPMS. The results show that the introduction of UV/moisture dual curing mode and micro-nano hierarchical structure gives MPMS functional materials excellent mechanical properties, antifouling properties, self-healing properties, and antibacterial properties. The shear strength and tensile strength of MPMS increase from 3.32 and 4.26 MPa of MAPDMS to 3.81 and 5.06 MPa, respectively. Its static contact angle increases from 115.9° of MAPDMS to 156.5°, and its slide angle decreases from 68.5° of MAPDMS to 7.8°, respectively. The antifouling performance of MPMS against seawater, soy sauce, juice, coffee, protein, and other contaminants is effectively improved compared with MAPDMS matrix. At the same time, the tensile strength and elongation at break of MPMS after healing reach 98.22% and 96.57% of those in original state, respectively. In addition, the antibacterial rates of MPMS against Escherichia coli and Staphylococcus aureus reach 99.85% and 100%, respectively. The MPMS prepared in this paper is expected to be widely used in marine antifouling, pipeline network, anti-icing, microfluidics, wearable devices, medical devices, electrochemical biosensors, and other fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications

Show Author's information Nan Zheng1,2Jie Liu1( )Guoqing Wang2Pan Yao1Lihong Dang3Ze Liu1Jiufu Lu1Wenge Li4( )
Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

Polydimethylsiloxane containing methacryloyloxy and methoxy silane groups (MAPDMS)-microcapsule-SiO2 (MPMS) functional materials were prepared by constructing micro-nano hierarchical structures on the surface of MAPDMS matrix. Herein, MAPDMS@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide/dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (MAPDMS@PGMAm/GO/QC18) self-healing microcapsules with compact multi-shell structure were synthesized and combined with nano-SiO2 to construct the hierarchical structures. Furthermore, ultraviolet (UV)/moisture dual curing mode was introduced into deep curing reaction and efficient self-healing reaction of the MPMS. The results show that the introduction of UV/moisture dual curing mode and micro-nano hierarchical structure gives MPMS functional materials excellent mechanical properties, antifouling properties, self-healing properties, and antibacterial properties. The shear strength and tensile strength of MPMS increase from 3.32 and 4.26 MPa of MAPDMS to 3.81 and 5.06 MPa, respectively. Its static contact angle increases from 115.9° of MAPDMS to 156.5°, and its slide angle decreases from 68.5° of MAPDMS to 7.8°, respectively. The antifouling performance of MPMS against seawater, soy sauce, juice, coffee, protein, and other contaminants is effectively improved compared with MAPDMS matrix. At the same time, the tensile strength and elongation at break of MPMS after healing reach 98.22% and 96.57% of those in original state, respectively. In addition, the antibacterial rates of MPMS against Escherichia coli and Staphylococcus aureus reach 99.85% and 100%, respectively. The MPMS prepared in this paper is expected to be widely used in marine antifouling, pipeline network, anti-icing, microfluidics, wearable devices, medical devices, electrochemical biosensors, and other fields.

Keywords: antibacterial, self-healing microcapsules, micro-nano hierarchical structure, antifouling, ultraviolet (UV)/moisture dual curing mechanism

References(59)

[1]

Bellanger, H.; Darmanin, T.; De Givenchy, E. T.; Guittard, F. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem. Rev. 2014, 114, 2694–2716.

[2]

Wang, Z. H.; Scheres, L.; Xia, H. S.; Zuilhof, H. Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 2020, 30, 1908098.

[3]

Ma, C. F.; Zhang, W. P.; Zhang, G. Z.; Qian, P. Y. Environmentally friendly antifouling coatings based on biodegradable polymer and natural antifoulant. ACS Sustainable Chem. Eng. 2017, 5, 6304–6309.

[4]

Zhu, B. F.; Liu, Z. H.; Liu, J.; Yang, Y. M.; Meng, Y. B.; Yu, F.; Jiang, L.; Wei, G. Y.; Zhang, Z. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance. Prog. Org. Coat. 2020, 140, 105510.

[5]

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Wang, S. S.; Zhang, Y. L.; Gu, J. W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253.

[6]

Zhang, W.; Lu, Y. B.; Liu, J.; Li, X. P.; Li, B. A.; Wang, S. C. Preparation of re-entrant and anti-fouling PVDF composite membrane with omniphobicity for membrane distillation. J. Membrane Sci. 2020, 595, 117563.

[7]

Liu, J.; Zheng, N.; Li, Z. L.; Liu, Z.; Wang, G. Q.; Gui, L. S.; Lin, J. Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 2022, 5, 1899–1909.

[8]

Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “line-plane”-like hetero-structured fillers. Compos. Part A: Appl. Sci. Manuf. 2022, 157, 106911.

[9]

Xu, Y. S. H.; Li, M. H.; Liu, M. Y. Corrosion and fouling behaviors of phosphatized Q235 carbon steel coated with fluorinated polysiloxane coating. Prog. Org. Coat. 2019, 134, 177–188.

[10]

Huang, J.; Cai, Y. C.; Xue, C. Y.; Ge, J.; Zhao, H. Y.; Yu, S. H. Highly stretchable, soft, and sticky PDMS elastomer by solvothermal polymerization process. Nano Res. 2021, 14, 3636–3642.

[11]

Yang, X. T.; Zhong, X.; Zhang, J. L.; Gu, J. W. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 2021, 68, 209–215.

[12]

Guazzelli, E.; Perondi, F.; Criscitiello, F.; Pretti, C.; Oliva, M.; Casu, V.; Maniero, F.; Gazzera, L.; Galli, G.; Martinelli, E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J. Mater. Chem. B 2021, 8, 9764–9776.

[13]

Hwang, H. D.; Kim, H. J. Enhanced thermal and surface properties of waterborne UV-curable polycarbonate-based polyurethane (meth)acrylate dispersion by incorporation of polydimethylsiloxane. React. Funct. Polym. 2011, 71, 655–665.

[14]

Mac Leod, T. C. O.; Marques, R. S.; Schiavon, M. A.; Assis, M. D. An environmentally friendly triphasic catalytic system: Mn(salen) occluded in membranes based on PDMS/PVA. Appl. Catal. B: Environ. 2010, 100, 55–61.

[15]

Du, J. J.; Yuan, H. X.; Xia, H.; Kou, H. J.; Zhang, Y. Z.; Xing, W. L.; Zhang, C. Improvement of superhydrophobicity and durability of EP+PDMS/SiO2 composite coatings by adjusting laser curing powers. Mater. Chem. Phys. 2022, 289, 126428.

[16]

Yang, X. F.; Song, Y.; Jiang, Y. H.; Wang, X. L.; Yang, Y. N.; Wang, J. H.; Wang, X. J.; He, N.; Lai, G. Q.; Yu, Y. C. Fabrication and performance of UV-curable Schiff base-containing antibacterial silicone modified materials. Prog. Org. Coat. 2023, 174, 107313.

[17]

Li, C. M.; Tan, J. J.; Gu, J. W.; Qiao, L.; Zhang, B. L.; Zhang, Q. Y. Rapid and efficient synthesis of isocyanate microcapsules via thiol-ene photopolymerization in Pickering emulsion and its application in self-healing coating. Compos. Sci. Technol. 2016, 123, 250–258.

[18]

Bakhshandeh, E.; Sobhani, S.; Croutxé-Barghorn, C.; Allonas, X.; Bastani, S. Siloxane-modified waterborne UV-curable polyurethane acrylate coatings: Chemorheology and viscoelastic analyses. Prog. Org. Coat. 2021, 158, 106323.

[19]

Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.

[20]

Bakhshandeh, E.; Bastani, S.; Saeb, M. R.; Croutxé-Barghorn, C.; Allonas, X. High-performance water-based UV-curable soft systems with variable chain architecture for advanced coating applications. Prog. Org. Coat. 2019, 130, 99–113.

[21]

Zhou, Y.; Liu, C. P.; Gao, J.; Chen, Y. K.; Yu, F. Y.; Chen, M. F.; Zhang, H. G. A novel hydrophobic coating film of water-borne fluoro-silicon polyacrylate polyurethane with properties governed by surface self-segregation. Prog. Org. Coat. 2019, 134, 134–144.

[22]

Yang, X. T.; Guo, Y. Q.; Luo, X.; Zheng, N.; Ma, T. B.; Tan, J. J.; Li, C. M.; Zhang, Q. Y.; Gu, J. W. Self-healing, recoverable epoxy elastomers, and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

[23]

Li, Z. W.; Liu, Y.; Marin, M.; Yin, Y. D. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888.

[24]

Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.

[25]

Shim, G. S.; Kim, J. S.; Back, J. H.; Jang, S. W.; Park, J. W.; Kim, H. J.; Choi, J. S.; Yeom, J. S. Preparation of acrylic pressure-sensitive adhesives by UV/UV step curing as a way of lifting the limitations of conventional dual curing techniques. Int. J. Adhes. Adhes. 2020, 96, 102445.

[26]

Kazybayeva, D. S.; Irmukhametova, G. S.; Khutoryanskiy, V. V. Thiol-ene “click reactions” as a promising approach to polymer materials. Polym. Sci. Ser. B 2022, 64, 1–16.

[27]

Jiang, B.; Shi, X. R.; Zhang, T.; Huang, Y. D. Recent advances in UV/thermal curing silicone polymers. Chem. Eng. J. 2022, 435, 134843.

[28]

Cui, Y. T.; Wei, B. X.; Wang, Y. J.; Guo, X.; Xiao, J. W.; Li, W.; Pang, A. M.; Bai, Y. P. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications. Prog. Org. Coat. 2022, 163, 106656.

[29]

Li, X. Q.; Bian, F. P.; Li, S.; Gui, X. F.; Yao, M. F.; Hu, J. W.; Lin, S. D. Preparation of siloxymethyl-modified silicone acrylate prepolymers with UV/moisture dual curability for applications in anti-smudge and anti-fingerprint coatings. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 658, 130669.

[30]

Zheng, N.; Zhang, X.; Min, X.; Liu, J.; Li, W. G.; Ji, X. H. Design of robust superhydrophobic coatings using a novel fluorinated polysiloxane with UV/moisture dual cure system. React. Funct. Polym. 2019, 143, 104329.

[31]

Zheng, N.; Liu, J.; Wang, Y. H.; Li, C. M.; Zhang, Q. Y. Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings. Prog. Org. Coat. 2021, 151, 106055.

[32]

Zheng, N.; Qiao, L.; Liu, J.; Lu, J. F.; Li, W. G.; Li, C. M.; Liu, Q.; Xue, Y.; Zhang, Q. Y. Microcapsules of multilayered shell structure synthesized via one-part strategy and their application in self-healing coatings. Compos. Commun. 2019, 12, 26–32.

[33]

Gabler-Smith, M. K.; Lauder, G. V. Ridges and riblets: Shark skin surfaces versus biomimetic models. Front. Mar. Sci. 2022, 9, 975062.

[34]

Pu, X.; Li, G. J.; Liu, Y. H. Progress and perspective of studies on biomimetic shark skin drag reduction. ChemBioEng Rev. 2016, 3, 26–40.

[35]

Han, Z. W.; Wang, Z.; Li, B.; Feng, X. M.; Jiao, Z. B.; Zhang, J. Q.; Zhao, J.; Niu, S. C.; Ren, L. Q. Flexible self-cleaning broadband antireflective film inspired by the transparent cicada wings. ACS Appl. Mater. Interfaces 2019, 11, 17019–17027.

[36]

Sun, J. Y.; Bhushan, B. Nanomanufacturing of bioinspired surfaces. Tribol. Int. 2019, 129, 67–74.

[37]

Huang, H. H.; Huang, C. X.; Xu, C. L.; Liu, R. Development and characterization of lotus-leaf-inspired bionic antibacterial adhesion film through beeswax. Food Pack. Shelf Life 2022, 33, 100906.

[38]

Sun, S. J.; Li, H.; Guo, Y. H.; Mi, H. Y.; He, P.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “lotus leaf effect”. Prog. Org. Coat. 2021, 151, 106090.

[39]

Cheng, Z. J.; Zhang, D. J.; Lv, T.; Lai, H.; Zhang, E. S.; Kang, H. J.; Wang, Y. Z.; Liu, P. C.; Liu, Y. Y.; Du, Y. et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv. Funct. Mater. 2018, 28, 1705002.

[40]

Barraza, B.; Olate-Moya, F.; Montecinos, G.; Ortega, J. H.; Rosenkranz, A.; Tamburrino, A.; Palza, H. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Sci. Technol. Adv. Mater. 2022, 23, 300–321.

[41]

Wang, Z. Q.; Li, C.; Si, X. Q.; Yang, B.; Huang, Y. X.; Qi, J. L.; Feng, J. C.; Cao, J. Brazing YSZ ceramics by a novel SiO2 nanoparticles modified Ag filler. Ceram. Int. 2020, 46, 16493–16501.

[42]

Gu, J. W.; Zhang, Q. Y.; Li, H. C.; Tang, Y. S.; Kong, J.; Dang, J. Study on preparation of SiO2/epoxy resin hybrid materials by means of sol-gel. Polym. -Plast. Technol. Eng. 2007, 46, 1129–1134.

[43]

Gu, Y. F.; Wu, Y. N.; Li, L. C.; Chen, W.; Li, F. T.; Kitagawa, S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem., Int. Ed. 2017, 56, 15658–15662.

[44]

Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal–organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids, and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

[45]

Rybkovskiy, D. V.; Koroteev, V. O.; Impellizzeri, A.; Vorfolomeeva, A. A.; Gerasimov, E. Y.; Okotrub, A. V.; Chuvilin, A.; Bulusheva, L. G.; Ewels, C. P. “Missing” one-dimensional red-phosphorus chains encapsulated within single-walled carbon nanotubes. ACS Nano 2022, 16, 6002–6012.

[46]

Lin, J.; Li, J. L.; Feng, S. C.; Gu, C. Q.; Li, H. J.; Lu, H. Q.; Hu, F.; Pan, D.; Xu, B. B.; Guo, Z. H. An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res. 2023, 16, 1052–1063.

[47]

Yang, Z.; Wang, M. Q.; Zhao, Q.; Qiu, H. W.; Li, J. J.; Li, X. M.; Shao, J. Y. Dielectrophoretic-assembled single and parallel-aligned Ag nanowire-ZnO-branched nanorod heteronanowire ultraviolet photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 22837–22845.

[48]

He, H. K.; Yang, F. F.; Yang, R. Flexible full two-dimensional memristive synapses of graphene/WSe2−xOy/graphene. Phys. Chem. Chem. Phys. 2020, 22, 20658–20664.

[49]

Chen, M. L.; Pan, L.; Xia, X. D.; Zhou, W.; Li, Y. Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceram. Int. 2022, 48, 34107–34127.

[50]

Durairaj, M.; Sabari, G. T. C.; Al-Sehemi, A. G. Impact of morphology on the nonlinear optical absorption of pristine molybdenum disulfide (MoS2) nanostructures. Opt. Mater. 2022, 131, 112632.

[51]

Johnson, D.; Qiao, Z.; Uwadiunor, E.; Djire, A. Holdups in nitride MXene’s development and limitations in advancing the field of MXene. Small 2022, 18, 2106129.

[52]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D Macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

[53]

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

[54]

Liu, J.; Fan, X. L.; Xue, Y.; Liu, Y. B.; Song, L X.; Wang, R. M.; Zhang, H. P.; Zhang, Q. Y. Fabrication of polymer capsules by an original multifunctional, active, amphiphilic macromolecule, and its application in preparing PCM microcapsules. New J. Chem. 2018, 42, 6457–6463.

[55]

Zhang, H.; Tan, J. J.; Liu, Y. B.; Hou, C. P.; Ma, Y.; Gu, J. W.; Zhang, B. L.; Zhang, H. P.; Zhang, Q. Y. Design and fabrication of robust, rapid self-healable, superamphiphobic coatings by a liquid-repellent “glue + particles” approach. Mater. Design 2017, 135, 16–25.

[56]

Michailidis, M.; Gutner-Hoch, E.; Wengier, R.; Onderwater, R.; D’Sa, R. A.; Benayahu, Y.; Semenov, A.; Vinokurov, V.; Shchukin, D. G. Highly effective functionalized coatings with antibacterial and antifouling properties. ACS. Sustainable Chem. Eng. 2020, 8, 8928–8937.

[57]

Zhang, M. D.; Zhou, F.; Wu, Y. J.; Wang, Q. Z.; Zhou, Z. F. Microstructure and electrochemical characteristics of CrMoN/Ag nanocomposite coatings in seawater. Surf. Coat. Technol. 2022, 411, 128551.

[58]

Ahmadi, R.; Asadpourchallou, N.; Kaleji, B. K. In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties, and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surf. Interfaces 2021, 24, 101072.

[59]

Wang, H. H.; Qin, S. D.; Yang, X. F.; Fei, G. Q.; Tian, M.; Shao, Y. M.; Zhu, K. A waterborne uniform graphene-poly(urethane-acrylate) complex with enhanced anticorrosive properties enabled by ionic interaction. Chem. Eng. J. 2018, 351, 939–951.

File
12274_2023_5563_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2023
Revised: 02 February 2023
Accepted: 08 February 2023
Published: 14 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52003148), the State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University (No. MRUKF2021023), the Key Research and Development Project of Shaanxi Province (No. 2023-YBGY-475), the Key Scientific Research Project of Education Department of Shaanxi Province (No. 22JS003), the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment (Cultivation) of Qinba Region (No. SXC-2310), and the start-up funds from the Shaanxi University of Technology (No. SLGRCQD2004).

Return